
Paper 109-25
Merges and Joins

Timothy J Harrington, Trilogy Consulting Corporation

Abstract

This paper discusses methods of joining SAS� data
sets. The different methods and the reasons for
choosing a particular method of joining are contrasted
and compared. Potential problems and limitations
when joining data sets are also discussed.

The need to combine data sets constantly arises
during software development, as does the need to
validate and test new code. There are two basic types
of join, vertical, and horizontal. Vertical joining is
appending one data set to another, whereas
horizontal joining is using one or more key variables
to combine different observations.

Vertical Joining

A good example of vertical joining is adding to a data
set in time sequence, for example, adding February’s
sales data to January’s sales data to give a year-to-
date data set. Providing both data sets have the
same variables and all the variables have the same
attributes such as data type, length, and label, there
is no problem. However, once the data sets are
combined at least one of the variables should, in
practice, be able to identify which of the source data
sets any given observation originated from. In this
sales data example a date or month name should be
present to indicate whether a given observation came
from January’s data or February’s data. Another issue
may be the sort order. In this example there is no
need to sort the resulting data set if the source data
sets are in date order, but if, say, the data sets were
sorted by product code, or sales representative the
resulting data set would need to be resorted by date.
Most importantly, when vertically joining data sets, is
the issue vertical compatibility. This is whether the
corresponding variables in each data set have the
same attributes, and if there are any variables which
are present in one data set but not in the other.

Using PROC DATASETS and APPEND

One method of vertical joining is to use the utility
procedure PROC DATASETS with the APPEND
statement. More than two data sets many be joined in
this way, but all of the data sets should be vertically
compatible. However, vertical incompatibility may be
overridden by using the FORCE option. When this
option is used, variables which are absent in one data
set are created with the same attributes in the
resulting data set, but the values are missing in each
observation which originated from the data set
without those variables. Where variable lengths are
different the shorter length values are right padded
with spaces to equal the longer length. Where data
types are different the numeric type is made
character. If labels are different the label from the

latest data set is used. If the FORCE option is not
specified and any of the data sets are not completely
vertically compatible applicable NOTES and
WARNINGS are written to the log file. If a variable is
present in the DATA data set but is absent in the
BASE data set the appending is not done. The
example below appends two data sets DATA01 and
DATA02 to the data set DATA99. DATA99 is the
‘Base’ data set, which, if it does not exist is created
and becomes the compound of DATA01 and DATA02
(A NOTE of this is written to the Log file). The
NOLIST option in PROC DATASETS prevents it from
running interactively.

PROC DATASETS NOLIST;
APPEND BASE= DATA99 DATA= DATA01
APPEND BASE= DATA99 DATA= DATA02;

RUN;

If observation order is important after appending, a
PROC SORT should be performed on the compound
data set (DATA99 in this example) by the appropriate
BY variables.

Vertical Joining with UNION Corresponding

In PROC SQL two or more data sets may be vertically
joined used UNION CORRESPONDING ALL. (If the
‘ALL’ is omitted only one of any duplicate
observations are kept). This is analogous to APPEND
in PROC DATASETS but if the data sets to be joined
are not vertically compatible only variables common
to both data sets are placed in the resulting table.
This is the same example as above, but using PROC
SQL with UNION CORRESPONDING ALL.

PROC SQL;
CREATE TABLE DATA99 AS
SELECT *
FROM DATA01

UNION CORRESPONDING ALL
SELECT *
FROM DATA02;

QUIT;

This PROC SQL works if DATA99 is being created as
new, but if DATA99 already exists and the intention is
append DATA01 and DATA02 to this data set the
code must be written as

PROC SQL;
CREATE TABLE DATA99 AS
SELECT *
FROM DATA99

UNION CORRESPONDING ALL
SELECT *
FROM DATA01;

UNION CORRESPONDING ALL
SELECT *
FROM DATA02;

QUIT;

Coders' Corner

Generally this method is less efficient than using
PROC DATASETS with APPEND.

Horizontal Joining

There are four basic types of horizontal join, the inner
join, left join, right join, and full join. All such joins are
Cartesian products made on specified key variables.
If there are duplicate matches in either or both tables
all of the matching observations are selected, for
example if there are two equal key values in each
input data set there will be four output observations
created.

The following example data sets are being used to
demonstrate horizontal joins. These data sets called
DOSING and EFFICACY are hypothetical clinical
trials data sets. In the DOSING data set PATIENT is
the patient id number, MEDCODE is the test
medication (A or B), DOSE_ID is an observation id
number, DOSEAMT is the amount of dose in mg, and
DOSEFRQ is the dose frequency in doses per day.
The EFFICACY data set contains an observation id
number, EFFIC_ID, a VISIT number, and an efficacy
SCORE (1 to 5). The variables DOSE_ID and
EFFIC_ID in this example are for easy identification
of the data set and input observation which
contributed to the resulting output observation.

The DOSING data set

MED DOSE DOSE
OBS PATIENT CODE DOSE_ID AMT FRQ

1 1001 A 1 2 2
2 1003 A 2 1 2
3 1004 A 3 1 2
4 1004 B 4 4 2
5 1006 B 5 2 2
6 1007 A 6 2 1
7 1008 A 7 1 2
8 1009 A 8 2 2

The EFFICACY data set

OBS PATIENT EFFIC_ID VISIT SCORE

1 1001 1 1 4
2 1002 2 1 5
3 1004 3 1 2
4 1004 4 2 1
5 1005 5 1 2
6 1009 6 1 5

The Inner Join

The inner join creates observations from data items
selected from either input data set where the key
values match in both tables. If the key values match
in only one table an output observation is not created.
An ‘inner’ join is a logical AND of the two tables and

is therefore commutative, that is the tables can be
joined in either order. The following PROC SQL
segment creates a table named INNER1 as the inner
join between DOSING and EFFICACY on PATIENT.
A point to note is that where there are duplicate key
values a complete Cartesian product is produced, in
this example this happens with Patient 1004. The ‘A’
and ‘B’ characters preceding the variable names are
aliases for each of the data set names and the
ORDER BY clause sorts the resulting data set in
ascending order of PATIENT and MEDCODE.

Table INNER1: An INNER JOIN on PATIENT
between DOSING and EFFICACY.

PROC SQL;
CREATE TABLE INNER1 AS
SELECT A.*, B.EFFIC_ID, B.VISIT,

B.SCORE
FROM DOSING A, EFFICACY B

WHERE A.PATIENT=B.PATIENT
ORDER BY PATIENT;

QUIT;

PAT- MED DOSE DOSE DOSE EFFIC
IENT CODE AMT FRQ VISIT SCORE ID ID

1 1001 A 2 2 1 4 1 1
2 1004 A 1 2 1 2 3 3
3 1004 B 4 2 1 2 4 3
4 1004 B 4 2 2 1 4 4
5 1004 A 1 2 2 1 3 4
6 1009 A 2 2 1 5 8 6

This resulting table, INNER1, contains only
observations with Patient Numbers common to both
data sets. There are four observations for Patient
1004 because of the Cartesian product of two
observations with this Patient Number in each data
set. If the WHERE clause were omitted the complete
Cartesian product of every observation would be
selected, producing 48 (6*8) observations, hence at
least one key variable must be specified when
performing any type of horizontal join on data sets of
more than a few observations. Another point to note
is that instead of using the WHERE clause, the
FROM statement could be rewritten as FROM
DOSING A INNER JOIN EFFICACY B.

The Left Join

A ‘left’ join selects items from all the observations in
the first (left) data set regardless of their key values
but only observations with matching key values from
the second (right) data set. Variables from the second
data set where the observation key values do not
match the join criteria are assigned missing values in
the output data set. In this example the table LEFT1
is created by performing a left join on DOSING and
EFFICACY. As with the inner join, where there are
multiple key values a complete Cartesian product is
created. Points to note are that non-key items from
the second data set (EFFICACY) are missing where
there is no key match, as in observations 2, 7, 8, and
9. Also, a left join is not commutative, reversing the

Coders' Corner

order of the source data sets would produce a totally
different result.

Table LEFT: A LEFT JOIN on PATIENT
between DOSING ('left' data set) and
EFFICACY ('right' data set).

PROC SQL;
CREATE TABLE LEFT1 AS

SELECT A.*, B.EFFIC_ID, B.VISIT,
B.SCORE
FROM DOSING A LEFT JOIN EFFICACY B

ON A.PATIENT = B.PATIENT
ORDER BY PATIENT;

QUIT;

PAT- MED DOSE DOSE DOSE EFFIC
IENT CODE AMT FRQ VISIT SCORE ID ID

1 1001 A 2 2 1 4 1 1
2 1003 A 1 2 . . 2 .
3 1004 A 1 2 1 2 3 3
4 1004 B 4 2 1 2 4 3
5 1004 A 1 2 2 1 3 4
6 1004 B 4 2 2 1 4 4
7 1006 B 2 2 . . 5 .
8 1007 A 2 1 . . 6 .
9 1008 A 1 2 . . 7 .

10 1009 A 2 2 1 5 8 6

The Right Join

A ‘right’ join is where all the observations are selected
from the second data set and where observations do
not match in the first data set the key values
themselves are assigned missing values. A right join,
like a left join, is not commutative neither is a right
join the same as reversing the order of the two data
sets in a left join. In this example observations 1 and
2 have missing values for PATIENT and the non-key
items from the DOSING data set because two
observations in EFFICACY, with PATIENT numbers
1002 and 1005, do not have the same patient
numbers as any of the observations in DOSING. (The
ORDER BY PATIENT clause causes the missing
values to float to the topmost observations.).

Table RIGHT1: A RIGHT JOIN on PATIENT
between DOSING('left' data set) and
EFFICACY('right' data set).

PROC SQL;
CREATE TABLE RIGHT1 AS

SELECT A.*, B.EFFIC_ID, B.VISIT,
B.SCORE
FROM DOSING A RIGHT JOIN

EFFICACY B
ON A.PATIENT = B.PATIENT

ORDER BY PATIENT;
QUIT;

PAT- MED DOSE DOSE DOSE EFFIC
IENT CODE AMT FRQ VISIT SCORE ID ID

1 . . . 1 5 . 2
2 . . . 1 2 . 5
3 1001 A 2 2 1 4 1 1
4 1004 B 4 2 2 1 4 4

5 1004 B 4 2 1 2 4 3
6 1004 A 1 2 2 1 3 4
7 1004 A 1 2 1 2 3 3
8 1009 A 2 2 1 5 8 6

The Full Join

The ‘full’ join selects all the observations from both
data sets but there are missing values where the key
value in each observation is found in one table only.
A ‘full’ join is the logical OR of the two tables, but is
not commutative because missing key values are
assigned to those non-matching observations in the
second data set. For example, if the order of the data
sets was reversed the missing values of PATIENT
would be due to PATIENTs 1003, 1006, 1007, and
1009 being in DOSING and not in EFFICACY, instead
of being due to PATIENTs 1002 and 1005 being in
EFFICACY and not in DOSING.

Table FULL1: A FULL JOIN on PATIENT
between DOSING('left' data set) and
EFFICACY('right' data set).

PROC SQL;
CREATE TABLE FULL1 AS
SELECT A.*, B.EFFIC_ID, B.VISIT,
B.SCORE
FROM DOSING A FULL JOIN
EFFICACY B
ON A.PATIENT = B.PATIENT
ORDER BY PATIENT;

QUIT;

PAT- MED DOSE DOSE DOSE EFFIC
IENT CODE AMT FRQ VISIT SCORE ID ID

1 . . . 1 5 . 2
2 . . . 1 2 . 5
3 1001 A 2 2 1 4 1 1
4 1003 A 1 2 . . 2 .
5 1004 B 4 2 1 2 4 3
6 1004 B 4 2 2 1 4 4
7 1004 A 1 2 1 2 3 3
8 1004 A 1 2 2 1 3 4
9 1006 B 2 2 . . 5 .
10 1007 A 2 1 . . 6 .
11 1008 A 1 2 . . 7 .
12 1009 A 2 2 1 5 8 6

Using the COALESCE function and
determining the source data set

When performing left, right, or full joins where
observations do not have a key variable match, non-
key values are assigned missing values. Sometimes
there is a need to substitute missing values with other
data, either hard coded values or different items from
either data set. One way to do this is with a CASE
construct, but the COALESCE function is provided
specifically for this purpose. In this example the
variable ADJSCORE (Adjusted Score) contains the

Coders' Corner

value of SCORE in the observations that match, but
where there is no match and SCORE is missing
AJDSCORE is assigned the value zero. If a value of
SCORE was missing in a matching observation the
value of ADJSCORE would also be set to zero.
COALESCE may be used with either a character or
numeric data type, but the second argument must be
of that same data type. The CASE statement in the
example assigns the values ‘Match’ or ‘Miss’ to the
character variable INVAR depending on whether the
values of PATIENT match or not.

COALESCE function example

PROC SQL;
CREATE TABLE LEFT1A(DROP=DOSE_ID) AS

SELECT A.*, B.VISIT, B.SCORE,
COALESCE(B.SCORE,0) AS ADJSCORE,
CASE (A.PATIENT=B.PATIENT)

WHEN 1 THEN ‘Match’
WHEN 0 THEN ‘Miss’ ELSE ‘ ‘

END AS INVAR LENGTH=5
FROM DOSING A LEFT JOIN

EFFICACY B
ON A.PATIENT = B.PATIENT

ORDER BY PATIENT, MEDCODE;
QUIT;

PAT- MED DOSE DOSE ADJ IN-
IENT CODE AMT FRQ VISIT SCORE SCORE VAR

1 1001 A 2 2 1 4 4 Match
2 1003 A 1 2 . . 0 Miss
3 1004 A 1 2 1 2 2 Match
4 1004 B 4 2 1 2 2 Match
5 1004 A 1 2 2 1 1 Match
6 1004 B 4 2 2 1 1 Match
7 1006 B 2 2 . . 0 Miss
8 1007 A 2 1 . . 0 Miss
9 1008 A 1 2 . . 0 Miss

10 1009 A 2 2 1 5 5 Match

The Data Step Merge

A DATA step MERGE joins two data sets inside a
DATA step to produce a resulting data set. A DATA
step MERGE differs from a PROC SQL in two
important ways. (1) The sort order of the key
variables is important because matching is performed
sequentially on an observation-by-observation basis.
(2) Cartesian products are not evaluated, the merge
is performed sequentially by input observation and
then the resulting observation is placed in the
Program Data Vector (PDV). When there are more
key matching observations in one data set than the
other, the non-key data from the last of the fewer
matching observations is retained in the PDV for
each remaining match of the more numerous
observations. This is called the implied retain.

Sort Ordering and BY Variables

BY variables are the ‘key’ variables on which the
merge matching is to be performed. They must have
been sorted in either ascending (default) order or
descending order using PROC SORT or an ORDER
BY statement in a prior PROC SQL. If the BY
variables are not sorted, or are sorted in an
inappropriate order, in either of the input data sets
this error results:

ERROR: BY variables are not properly
sorted on <Data Set name>.

The DATA step performing the merge must contain
an applicable BY statement, matching the BY
statement in the preceding PROC SORT or PROC
SQL ORDER BY statement of each corresponding
set. If a key variable has been sorted in descending
order that variable must be specified as
DESCENDING in the BY statement of the merge.

If the BY values are unique in both data sets the
merge is a ‘one to one’ merge. If there are
observations with duplicate BY values in one data set
and only one matching observation in the other data
set that single observation is joined with all of the
matching BY variables in the first data set because of
the implied retain. This is a ‘one to many’ merge. This
aspect of merging is commutative, in that performing
a ‘many to one’ merge with the order of the data sets
reversed produces the same result. A ‘Many to many’
merge is where there are corresponding duplicate BY
variables in both data sets. Such a merge does not
result in a Cartesian product because the
observations are joined in sequence where they
match. (See what happens to Patient 1004 in the
examples listed below). When ‘many to many’
situations are encountered the following message is
written to the log file:

NOTE: MERGE statement has more than one
data set with repeats of BY values

Merges and IN Variables

An IN variable is a Boolean flag, which applies to an
input data set. The IN variable is set to ‘true’ (1) or
‘false’ (0) depending on whether that data set
contributed data to the current PDV contents or not.
When two data sets are being merged at least one of
the IN variables must be ‘true’, both IN variables are
‘true’ if the BY variables match. IN variables are most
useful for testing for such matches, as shown in the
examples listed below.

Comparing a DATA Step Merge with a PROC
SQL Join.

The following examples use a DATA step MERGE
instead of a PROC SQL join to perform
corresponding joins on the same key variables as
shown above using the DOSING and EFFICACY data
sets.

Coders' Corner

This first example performs a merge using the key
variable PATIENT and outputs an observation when
the patient numbers are equal, and hence the IN
variables are both true. This merge corresponds to
the PROC SQL inner join, but with one important
difference, no Cartesian products are generated
because the merging process is sequential by
observation. Hence, the data set INNER2 has only
two observations for Patient 1004 instead of the four
in INNER1. (For this reason ‘many to many’ merges
should be avoided in practice). Another point to note
is that when testing IN variables an IF statement must
be used, a WHERE clause will not work because the
IN variables are calculated within the DATA Step and
are not from the source data.

Table INNER2: A MERGE between DOSING and
EFFICACY where equal values of PATIENT
occur in both input data sets.

DATA INNER2;
MERGE DOSING(IN=A) EFFICACY(IN=B);
BY PATIENT;
IF (A=B);

RUN;
PAT- MED DOSE DOSE DOSE EFFIC
IENT CODE AMT FRQ VISIT SCORE ID ID

1 1001 A 2 2 1 4 1 1
2 1004 A 1 2 1 2 3 3
3 1004 B 4 2 2 1 4 4
4 1009 A 2 2 1 5 8 6

This second example performs the same merge as
the first example but only outputs an observation
whenever the DOSING data set contributes a value to
the PDV. Observations with values of PATIENT which
are present only in EFFICACY and not in DOSING
are not output and missing values are substituted in
the non-key variables not from DOSING. This merge
corresponds to the PROC SQL left join, but without
the Cartesian product of duplicate key values (Patient
1004).

Table LEFT2: All values of PATIENT are
taken from DOSING and only matching
values from EFFICACY.

DATA LEFT2;
MERGE DOSING(IN=A) EFFICACY;
BY PATIENT;
IF A;

RUN;

PAT- MED DOSE DOSE DOSE EFIC
IENT CODE AMT FRQ VISIT SCORE ID ID

1 1001 A 2 2 1 4 1 1
2 1003 A 1 2 . . 2 .
3 1004 A 1 2 1 2 3 3
4 1004 B 4 2 2 1 4 4
5 1006 B 2 2 . . 5 .
6 1007 A 2 1 . . 6 .
7 1008 A 1 2 . . 7 .
8 1009 A 2 2 1 5 8 6

In this third example only observations in the PDV
from the EFFICACY data set are output. Values in
DOSING which do not match, including the key value
(Patient) are output as missing values. This
corresponds to a right join in PROC SQL. Note that
both the order in which the data sets are specified
and which IN variable is tested are important. In this
example ‘merge dosing efficacy(in=b)’ is not the
same as ‘merge efficacy(in=b) dosing’ or ‘merge
dosing(in=b) efficacy’.

Table RIGHT2: A MERGE between DOSING and
EFFICACY where all values of PATIENT are
taken from EFFICACY and only matching
values from DOSING.

DATA RIGHT2;
MERGE DOSING EFFICACY(IN=B);
BY PATIENT;
IF B;

RUN;

PAT- MED DOSE DOSE DOSE EFFIC
IENT CODE AMT FRQ VISIT SCORE ID ID

1 1001 A 2 2 1 4 1 1
2 1002 . . 1 5 . 2
3 1004 A 1 2 1 2 3 3
4 1004 B 4 2 2 1 4 4
5 1005 . . 1 2 . 5
6 1009 A 2 2 1 5 8 6

In this next and final example all observations in the
PDV are output regardless of a match or not, hence
IN variables are not needed. This corresponds to the
PROC SQL full join.

Table FULL2: A MERGE between DOSING and
EFFICACY where all values of PATIENT are
taken from both data sets regardless of
whether they match or not.

DATA FULL2;
MERGE DOSING EFFICACY;
BY PATIENT;

RUN;

PAT- MED DOSE DOSE DOSE EFFIC
IENT CODE AMT FRQ VISIT SCORE ID ID

1 1001 A 2 2 1 4 1 1
2 1002 . . 1 5 . 2
3 1003 A 1 2 . . 2 .
4 1004 A 1 2 1 2 3 3
5 1004 B 4 2 2 1 4 4
6 1005 . . 1 2 . 5
7 1006 B 2 2 . . 5 .
8 1007 A 2 1 . . 6 .
9 1008 A 1 2 . . 7 .
10 1009 A 2 2 1 5 8 6

PROC SQL Joins vs. DATA Step MERGEs

There are several important differences between
PROC SQL joins and DATA Step MERGES. A SQL
join creates a Cartesian product out of multiple

Coders' Corner

occurrences of key values. When there are more
matching key observations in one data set than in the
other (‘one to many’ or ‘many to one’ merges) the
contents of the last matching observation from the
data set with fewer matches are retained in the PDV.
This is the implied retain. The result is the remaining
non-key values from the data set with fewer matches
appear in the corresponding excess output
observations. The implied retain does not occur in the
above examples with Patient 1004 because there are
the same number of observations for this patient in
both data sets. If one of the Patient 1004
observations is deleted from either DOSING or
EFFICACY an implied retain would then take place
with the second observation. A ‘many-to-many’
MERGE does not produce a complete Cartesian
product with duplicate key values in both data sets
(‘many to many’). A note indicating repeating BY
values is written to the log file. ‘Many-to-many’
merges are also expensive in terms of processing
time and resources. Hence ‘many-to-many’ merges
should be avoided.

When using a SQL join the observations in either
data set do not have to be sorted, a DATA step
MERGE requires the key variables (BY variables) to
have been sorted in a corresponding order, either
using PROC SORT, or an ORDER BY in a prior
PROC SQL.

A PROC SQL join can use aliases to identify the data
set, which is contributing a particular variable. A
DATA Step MERGE can be used with a logical IN
variable to identify which data set contributed the key
values to the current PDV contents. Specific non-key
variable names must be unique to each data set
since their source data set cannot be identified with
an alias. Data set options such as KEEP, DROP, and
RENAME may be used in both PROC SQL or in a
DATA step. To subset data from either input data set
a WHERE statement may be used in parenthesis
after the data set name (This is more efficient than
using the WHERE statement in a CREATE TABLE
block or a DATA step.)

Runtime benchmark tests show that a PROC SQL
join is faster than a DATA Step MERGE. Using
indexes improves performance still further, but PROC
SQL indexes and DATA Step indexes are
implemented differently internally by the SAS system
and may conflict with each other curtailing
performance.

More than Two Data Sets at a Time

In any of the examples shown above more than two
data sets may be joined. However, due to the
increased complexity, such as possible large
Cartesian products when performing PROC SQL
joins, joining more than two data sets at a time should
be avoided. When the requirement is to join many
data sets a ‘result’ data set should be created from a
join of the first two and then this ‘result’ data set be
joined with each other data set one at a time.

References

Timothy J. Harrington, Trilogy Consulting
Corporation, 5148 Lovers Lane, Kalamazoo, MI
49002. (616) 344 1996.
TJHARRIN@TRILOGYUSA.COM

SAS is a registered trademark of the SAS Institute
Inc. In the USA and other countries. � indicates USA
registration. Other brand and product names are
registered trademarks or trademarks of their
respective companies.

Coders' Corner

	CD Table of Contents

