SUGI 29 Tutorials

Paper 268-29

Introduction to Proc SQL
Katie Minten Ronk, Systems Seminar Consultants, Madison, WI

ABSTRACT
PROC SQL is a powerful Base SAS® Procedure that combines the functionality of DATA and PROC steps into a single step.

PROC SQL can sort, summarize, subset, join (merge), and concatenate datasets, create new variables, and print the results
or create a new table or view all in one step!

PROC SQL can be used to retrieve, update, and report on information from SAS data sets or other database products. This
paper will concentrate on SQL'’s syntax and how to access information from existing SAS data sets. Some of the topics
covered in this brief introduction include:

e Writing SQL code using various styles of the SELECT statement.
« Dynamically creating new variables on the SELECT statement.

e Using CASE/WHEN clauses for conditionally processing the data.
* Joining data from two or more data sets (like a MERGE!).

» Concatenating query results together.

WHY LEARN PROC SQL?

PROC SQL can not only retrieve information without having to learn SAS syntax, but it can often do this with fewer and shorter
statements than traditional SAS code. Additionally, SQL often uses fewer resources than conventional DATA and PROC
steps. Further, the knowledge learned is transferable to other SQL packages.

AN EXAMPLE OF PROC SQL SYNTAX

Every PROC SQL query must have at least one SELECT statement. The purpose of the SELECT statement is to name the
columns that will appear on the report and the order in which they will appear (similar to a VAR statement on PROC PRINT).
The FROM clause names the data set from which the information will be extracted from (similar to the SET statement). One
advantage of SQL is that new variables can be dynamically created on the SELECT statement, which is a feature we do not
normally associate with a SAS Procedure:

PRCC sQ;
SELECT STATE, SALES,
(SALES * .05) AS TAX
FROM USSALES;
QUIT;
(no output shown for this code)

THE SELECT STATEMENT SYNTAX

The purpose of the SELECT statement is to describe how the report will look. It consists of the SELECT clause and several
sub-clauses. The sub-clauses name the input dataset, select rows meeting certain conditions (subsetting), group (or
aggregate) the data, and order (or sort) the data:

PROC SQL opti ons;
SELECT col unm(s)
FROM t abl e- name | vi ew nane
VWHERE expressi on
GROUP BY col umm(s)
HAVI NG expressi on
ORDER BY col umm(s);

QT

A SIMPLE PROC SQL

An asterisk on the SELECT statement will select all columns from the data set. By default a row will wrap when there is too
much information to fit across the page. Column headings will be separated from the data with a line and no observation
number will appear:

PROC SQ.;

SUGI 29 Tutorials

SELECT *
FROM USSALES;
QT
(see output #1 for results)

A COMPLEX PROC SQL

The SELECT statement in it's simplest form, needs a SELECT and a FROM clause. The SELECT statement can also have
all six possible clauses represented in a query:

proc sql;
SELECT state, sun{(sal es) as TOTSALES
FROM ussal es
WHERE state in ("W',"M","IL")
CROUP BY state
HAVI NG sum(sal es) > 40000
ORDER BY state desc;
quit;
(see output #2 for results)

These statements will be reviewed in detail later in the paper.

LIMITING INFORMATION ON THE SELECT

To specify that only certain variables should appear on the report, the variables are listed and separated on the SELECT
statement. The SELECT statement does NOT limit the number of variables read. The NUMBER option will print a column on
the report labeled 'ROW' which contains the observation number:

PROC SQL NUMBER;
SELECT STATE, SALES
FROM USSALES;
QIT;
(see output #3 for results)

CREATING NEW VARIABLES

Variables can be dynamically created in PROC SQL. Dynamically created variables can be given a variable name, label, or
neither. If a dynamically created variable is not given a name or a label, it will appear on the report as a column with no
column heading. Any of the DATA step functions can be used in an expression to create a new variable except LAG, DIF, and
SOUND. Notice the commas separating the columns:

PROC SQ_;
SELECT SUBSTR(STORENOG, 1, 3) LABEL=" REG QN ,
SALES, (SALES * .05) AS TAX
(SALES * .05) * .01
FROM USSALES;
QUIT,;
(see output #4 for results)

THE CALCULATED OPTION ON THE SELECT
Starting with Version 6.07, the CALCULATED component refers to a previously calculated variable so recalculation is not
necessary. The CALCULATED component must refer to a variable created within the same SELECT statement:

PROC SQL;
SELECT STATE, (SALES * .05) AS TAX,
(SALES * .05) * .01 AS REBATE
FROM USSALES;
- OI" -
SELECT STATE, (SALES * .05) AS TAX,
CALCULATED TAX * .01 AS REBATE
FROM USSALES;

SUGI 29 Tutorials

QUIT,

(see output #5 for results)

USING LABELS AND FORMATS

SAS-defined or user-defined formats can be used to improve the appearance of the body of a report. LABELS give the ability
to define longer column headings:

TITLE ' REPORT OF THE U. S. SALES' ;
FOOTNOTE ' PREPARED BY THE MARKETI NG DEPT. ' ;
PROC SQL;
SELECT STATE, SALES
FORVAT=DOLLAR10. 2
LABEL=" AMOUNT OF SALES ,
(SALES * .05) AS TAX
FORMAT=DOLLAR?. 2
LABEL=" 5% TAX
FROM USSALES;
QIT;
(see output #6 for results)

THE CASE EXPRESSION ON THE SELECT
The CASE Expression allows conditional processing within PROC SQL.:

PROC SQL;
SELECT STATE,
CASE
VWHEN SALES BETWEEN O AND 10000 THEN ' LOW
WHEN SALES BETWEEN 10001 AND 15000 THEN ' AVG
WHEN SALES BETWEEN 15001 AND 20000 THEN ' HI GH
ELSE ' VERY H GH
END AS SALESCAT
FROM USSALES;
QUIT,

(see results #7 for results)

The END is required when using the CASE. Coding the WHEN in descending order of probability will improve efficiency
because SAS will stop checking the CASE conditions as soon as it finds the first true value. Also note that the length of
SALESCAT will be the longest value (the length of VERY HIGH or nine characters). No special length statement is required
as itis in the data step.

Another interesting thing about CASE-WHEN logic is that the same operators that are available on the WHERE statement, are
also available in CASE-WHEN logic. These operators are:

» All operators that IF uses (=, <, >, NOT, NE, AND, OR, IN, etc)
« BETWEEN AND

* CONTAINS or'?

* IS NULL or IS MISSING

. =%

« LIKE

ANOTHER CASE

The CASE statement has much of the same functionality as an IF statement. Here is yet another variation on the CASE
expression:

PROC SQL;
SELECT STATE,
CASE
VWHEN SALES > 20000 AND STORENO
IN (’33281','31983") THEN ' CHECKI T’
ELSE ' OKAY

SUGI 29 Tutorials

END AS SALESCAT
FROM USSALES;
QUIT;
(see output #8 for results)

ADDITIONAL SELECT STATEMENT CLAUSES

The GROUP BY clause can be used to summarize or aggregate data. Summary functions (also referred to as aggregate
functions) are used on the SELECT statement for each of the analysis variables:

PROC SQ.;
SELECT STATE, SUM SALES) AS TOTSALES
FROM USSALES
CROUP BY STATE;
QUIT;
(see output #9 for results)

Other summary functions available are the AVG/MEAN, COUNT/FREQ/N, MAX, MIN, NMISS, STD, SUM, and VAR.
This capability Is similar to PROC SUMMARY with a CLASS statement.

REMERGING
Remerging occurs when a summary function is used without a GROUP BY. The result is a grand total shown on every line:

PROC SQL;
SELECT STATE, SUM SALES) AS TOTSALES
FROM USSALES;

QUIT,

(see output #10 for results)

REMERGING FOR TOTALS
Sometimes remerging is good, as in the case when the SELECT statement does not contain any other variables:

PROC SQL;
SELECT SUM SALES) AS TOTSALES
FROM USSALES;
QUIT;
(see output #11 for results)

CALCULATING PERCENTAGE
Remerging can also be used to calculate percentages:

PROC SQ_;
SELECT STATE, SALES,
(SALES/ SUM SALES)) AS PCTSALES
FORVAT=PERCENT?. 2
FROM USSALES;
QUIT;
(see output #12 for results)

Check your output carefully when the remerging note appears in your log to determine if the results are what you expect.

SORTING THE DATA IN PROC SQL

The ORDER BY clause will return the data in sorted order: Much like PROC SORT, if the data is already in sorted order,
PROC SQL will print a message in the LOG stating the sorting utility was not used. When sorting on an existing column,
PROC SQL and PROC SORT are nearly comparable in terms of efficiency. SQL may be more efficient when you need to sort
on a dynamically created variable:

PROC SQL;
SELECT STATE, SALES
FROM USSALES

SUGI 29 Tutorials

ORDER BY STATE, SALES DESC;

QUIT,;
(see output #13 for results)

SORT ON NEW COLUMN
On the ORDER BY or GROUP BY clauses, columns can be referred to by their name or by their position on the SELECT
cause. The option 'ASC’ (ascending) on the ORDER BY clause is the default, it does not need to be specified.

PROC SQL;
SELECT SUBSTR(STORENQ, 1, 3)
LABEL=' REG ON ,
(SALES * .05) AS TAX
FROM USSALES
ORDER BY 1 ASC, TAX DESC;
QUIT,

(see output #14 for results)

SUBSETTING USING THE WHERE
The WHERE statement will process a subset of data rows before they are processed:
PROC SQ_;
SELECT *
FROM USSALES
WHERE STATE IN ("OH ,"IN ,"IL");

SELECT *
FROM USSALES
WHERE NSTATE I N (10, 20, 30);

SELECT *

FROM USSALES

WHERE STATE IN ("OH ,’IN,’'IL’) AND SALES > 500;
QUIT,

(no output shown for this exanple)

INCORRECT WHERE CLAUSE
Be careful of the WHERE clause, it cannot reference a computed variable:

PROC SQL;
SELECT STATE, SALES,
(SALES * .05) AS TAX
FROM USSALES
WHERE STATE IN ("OH ,’IN,’IL) AND TAX > 10 ;
QUIT,

(see output #15 for results)

WHERE ON COMPUTED COLUMN
To use computed variables on the WHERE clause they must be recomputed:

PROC SQL;
SELECT STATE, SALES,
(SALES * .05) AS TAX
FROM USSALES
WHERE STATE IN ("OH ,’IL","IN)
AND (SALES * .05) > 10;
QUIT,

(see output #16 for results)

SELECTION ON GROUP COLUMN
The WHERE clause cannot be used with the GROUP BY:

SUGI 29 Tutorials

PROC SQL;
SELECT STATE, STORE,
SUM SALES) AS TOTSALES
FROM USSALES
CROUP BY STATE, STORE
WHERE TOTSALES > 500;
QUIT,;
(see output #17 for results)

USE HAVING CLAUSE
In order to subset data when grouping is in effect, the HAVING clause must be used:

PROC SQL;
SELECT STATE, STORENQ,
SUM SALES) AS TOTSALES
FROM USSALES
GROUP BY STATE, STORENO
HAVI NG SUM SALES) > 500;
QUIT,

(see output #18 for results)

CREATING NEW TABLES OR VIEWS

The CREATE statement provides the ability to create a new data set as output in lieu of a report (which is what happens when
a SELECT is present without a CREATE statement). The CREATE statement can either build a TABLE (a traditional SAS
dataset, like what is built on a SAS DATA statement) or a VIEW (not covered in this paper):

PROC SQL;
CREATE TABLE TESTA AS
SELECT STATE, SALES
FROM USSALES
WHERE STATE IN ("IL, OH);

SELECT * FROM TESTA;
QUIT,

(see output #19 for results)

The name given on the create statement can either be temporary or permanent. Only one table or view can be created by a
CREATE statement. The second SELECT statement (without a CREATE) is used to generate the report.

JOINING DATASETS USING PROC SQL

A join is used to combine information from multiple files. One advantage of using PROC SQL to join files is that it does not
require sorting the datasets prior to joining as is required with a DATA step merge.

A Cartesian Join combines all rows from one file with all rows from another file. This type of join is difficult to perform using
traditional SAS code.

PROC SQL;

SELECT *

FROM G RLS, BOYS;
QUIT,

(see output #20 for results)

INNER JOIN
A Conventional or Inner Join combines datasets only if an observation is in both datasets. This type of join is similar to a

DATA step merge using the IN Data Set Option and IF logic requiring that the observation’s key is on both data sets (IF ONA
AND ONB).

PROC SQL;

SUGI 29 Tutorials

SELECT *
FROM G RLS, BOYS
VWHERE G RLS. STATE=BOYS. STATE;
QIT;
(see output #21 for results)

JOINING THREE OR MORE TABLES
An Associative Join combines information from three or more tables. Performing this operation using traditional SAS code
would require several PROC SORTSs and several DATA step merges. The same result can be achieved with one PROC SQL:

PROC SQL;
SELECT B. FNAME, B. LNAVE, CLAI MBS,
E. STORENO, STATE
FROM BENEFI TS B, EMPLOYEE E,
FEBSALES F
VWHERE B. FNAVE=E. FNAVE AND
B. LNAME=E. LNAVE AND
E. STORENO=F. STORENO AND
CLAIMB > 1000;
QUIT,

(see output #22 for dataset |ist and results)

CONCATENATING QUERY RESULTS

Query results can be concatenated with the UNION operator.

The UNION operator keeps only unique observations. To keep all observations, the UNION ALL operator can be used.
Traditional SAS syntax would require the creation of multiple tables and then either a SET concatenation or a PROC
APPEND. Again, the results can be achieved with one PROC SQL:

PROC SQL;
CREATE TABLE YTDSALES AS
SELECT TRANCODE, STORENO, SALES
FROM JANSALES

UNI ON
SELECT TRANCODE, STORENO,
SALES * .99
FROM FEBSALES;
QUIT,

(no output shown for this exanple)

IN SUMMARY

PROC SQL is a powerful data analysis tool. It can perform many of the same operations as found in traditional SAS code, but
can often be more efficient because of its dense language structure.

PROC SQL can be an effective tool for joining data, particularly when doing associative, or three-way joins. For more
information regarding SQL joins, reference the papers noted in the bibliography.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Katie Minten Ronk

Systems Seminar Consultants
2997 Yarmouth Greenway Drive
Madison, W1 53713

Phone: (608) 278-9964

Fax: (608) 278-0065

SUGI 29 Tutorials

Email: kronk@sys-seminar.com
Web: www.sys-seminar.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SUGI 29 Tutorials

OUTPUT #1 (PARTIAL):

STATE SALES STORENO
COMMENT

STORENAM

WI 10103.23 32331

SALES WERE SLOW BECAUSE OF COMPETITORS SALE
RON'S VALUE RITE STORE

WI 9103.23 32320
SALES SLOWER THAN NORMAL BECAUSE OF BAD WEATHER
PRICED SMART GROCERS

WI 15032.11 32311
AVERAGE SALES ACTIVITY REPORTED
VALUE CITY

OUTPUT #2 (PARTIAL):

STATE TOTSALES

MI 53341.66
IL 84976.57
OUTPUT #3 (PARTIAL):
ROW STATE SALES
1 w1 10103.23
2 W1 9103.23
3 w1 15032. 11
OUTPUT #4 (PARTIAL):
REGION SALES TAX
323 10103.23 505.1615 5.051615
323 9103.23 455.1615 4.551615
323 15032.11 751.6055 7.516055
332 33209.23 1660.462 16.60461
OUTPUT #5 (PARTIAL):
STATE TAX REBATE
W1 505.1615 5.051615
WI 455.1615 4.551615
WI 751.6055 7.516055
MI 1660.462 16.60461

SUGI 29 Tutorials

OUTPUT #6 (PARTIAL):
REPORT OF THE U.S. SALES

AMOUNT OF
STATE SALES % TAX
WI $10,103.23 $505.16
WI $9,103.23 $455.16
WI $15,032.11 $751.61
MI $33,209.23 1660.46

PREPARED BY THE MARKETING DEPT.

OUTPUT #7 (PARTIAL):
STATE SALESCAT

WI AVG
WI Low
WI HIGH
MI VERY HIGH

OUTPUT #8 (PARTIAL):
STATE SALESCAT

WI OKAY
WI OKAY
WI OKAY
MI CHECKIT

OUTPUT #9:
STATE TOTSALES

IL 84976.57
MI 53341.66
WI 34238.57

OUTPUT #10 (PARTIAL):

STATE TOTSALES
WI 172556.8
WI 172556.8
WI 172556.8
MI 172556.8
OUTPUT #11:
TOTSALES
172556.8

10

SUGI 29 Tutorials

OUTPUT #12 (PARTIAL):

(1 og message shown) STATE SALES PCTSALES
w 10103. 23 5.86%
W 9103. 23 5.28%
w 15032. 11 8.71%
M 33209. 23 19. 2%

NOTE: The query requires renergi ng sunmary
Statistics back with the original data.

OUTPUT #13 (PARTIAL):

STATE SALES

IL 32083. 22

IL 22223.12

IL 20338. 12

IL 10332. 11

M 33209. 23

OUTPUT #14 (PARTIAL):

REG ON TAX
312 516. 6055
313 1604. 161
313 1111. 156
319 1016. 906

OUTPUT #15 (THE RESULTING SAS LOG- PARTIAL):

27 PROC SQL;

28 SELECT STATE,SALES, (SALES * .05) AS TAX

29 FROM USSALES

30 WHERE STATE IN ('OH','IN','IL') AND TAX > 10;

ERROR: THE FOLLOWING COLUMNS WERE NOT FOUND IN THE
CONTRIBUTING TABLES: TAX.

NOTE: The SAS System stopped processing this step because

of errors.

OUTPUT #16 (PARTIAL):

STATE SALES TAX
WI 10103.23 505.1615
WI 9103.23 455.1615
WI 15032.11 751.6055
IL 20338.12 1016.906

11

SUGI 29 Tutorials

OUTPUT #17 (THE RESULTING SAS LOG- PARTIAL):

167 GROUP BY STATE, STORE
168 WHERE TOTSALES > 500;

22

202

ERROR 22-322: Expecting one of the following: (, **, *, /, +, -
vy, |1, <, <=, <>, =, >, >=, EQ, GE, GT, LE, LT,
NE, "=, ~=, &, AND, !, OR, |, ',', HAVING, ORDER

The statement is being ignored.

ERROR 202-322: The option or parameter is not recognized.

OUTPUT #18 (PARTIAL):

STATE STORENO TOTSALES
IL 31212 10332.11
IL 31373 22223.12
IL 31381 32083.22
IL 31983 20338.12
MI 33281 33209.23
OUTPUT #19:
STATE SALES
IL 20338.12
IL 10332.11
IL 32083.22
IL 22223.12
OUTPUT #20(PARTIAL):
NAME STATE NAME STATE
NANCY WI NED WI
NANCY WI GENE NY
NANCY WI ADAM CA
JEAN MN NED WI
JEAN MN GENE NY
JEAN MN ADAM CA
AMELIA IL NED WI
AMELIA IL GENE NY
AMELIA IL ADAM CA

OUTPUT #21 (PARTIAL):

12

SUGI 29 Tutorials

NAME STATE NAME STATE
NANCY WI NED WI
OUTPUT #22:
EMPLOYEE FEBSALES BENEFITS
0BS FNAME LNAME STORENO 0BS STATE SALES STORENO OBS FNAME LNAME CLAINMS
1 ANN BECKER 33281 1 MI 31209.23 33281 1 ANN BECKER 2003
2 CHRIS DOBSON 33281 2 MI 15132.43 33312 2 CHRIS DOBSON 100
3 EARL FISHER 33281 3 IL 25338.12 31983 3 ALLEN PARK 10392
4 ALLEN PARK 31373 4 IL 26223.12 31373 4 BETTY JOHNSON 3832
5 BETTY JOHNSON 31373
6 KAREN ADAMS 31373
FNAME LNAME CLAIMS STORENO STATE
ANN BECKER 2003 33281 MI
ALLEN PARK 10392 31373 IL
BETTY JOHNSON 3832 31373 IL

13

	SUGI 29 Proceedings Table of Contents

