
SAS® 9.3 SQL Procedure
User’s Guide

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc 2011. SAS® 9.3 SQL Procedure User’s Guide. Cary, NC: SAS
Institute Inc.

SAS® 9.3 SQL Procedure User’s Guide

Copyright © 2011, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-60764-892-5

All rights reserved. Produced in the United States of America.

For a hardcopy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book:Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is
subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer Software-Restricted Rights
(June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, July 2011
2nd printing, August 2012

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For
more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at
support.sas.com/publishing or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

http://support.sas.com/publishing

Contents

About This Book . vii
What’s New in the SAS 9.3 SQL Procedure . xi
Recommended Reading . xv

PART 1 Using the SQL Procedure 1

Chapter 1 • Introduction to the SQL Procedure . 3
What Is SQL? . 3
What Is the SQL Procedure? . 3
Terminology . 4
Comparing PROC SQL with the SAS DATA Step . 5
Notes about the Example Tables . 7

Chapter 2 • Retrieving Data from a Single Table . 19
Overview of the SELECT Statement . 20
Selecting Columns in a Table . 22
Creating New Columns . 27
Sorting Data . 37
Retrieving Rows That Satisfy a Condition . 44
Summarizing Data . 56
Grouping Data . 64
Filtering Grouped Data . 69
Validating a Query . 71

Chapter 3 • Retrieving Data from Multiple Tables . 73
Introduction . 73
Selecting Data from More than One Table by Using Joins . 74
Using Subqueries to Select Data . 95
When to Use Joins and Subqueries . 101
Combining Queries with Set Operators . 102

Chapter 4 • Creating and Updating Tables and Views . 109
Introduction . 110
Creating Tables . 110
Inserting Rows into Tables . 114
Updating Data Values in a Table . 118
Deleting Rows . 120
Altering Columns . 121
Creating an Index . 124
Deleting a Table . 126
Using SQL Procedure Tables in SAS Software . 126
Creating and Using Integrity Constraints in a Table . 126
Creating and Using PROC SQL Views . 129

Chapter 5 • Programming with the SQL Procedure . 135
Introduction . 136
Using PROC SQL Options to Create and Debug Queries . 136

Improving Query Performance . 140
Accessing SAS System Information by Using DICTIONARY Tables 144
Using SAS Data Set Options with PROC SQL . 151
Using PROC SQL with the SAS Macro Facility . 152
Formatting PROC SQL Output by Using the REPORT Procedure 160
Accessing a DBMS with SAS/ACCESS Software . 162
Using the Output Delivery System with PROC SQL . 169

Chapter 6 • Practical Problem-Solving with PROC SQL . 171
Overview . 172
Computing a Weighted Average . 172
Comparing Tables . 174
Overlaying Missing Data Values . 176
Computing Percentages within Subtotals . 179
Counting Duplicate Rows in a Table . 181
Expanding Hierarchical Data in a Table . 183
Summarizing Data in Multiple Columns . 186
Creating a Summary Report . 188
Creating a Customized Sort Order . 191
Conditionally Updating a Table . 194
Updating a Table with Values from Another Table . 197
Creating and Using Macro Variables . 199
Using PROC SQL Tables in Other SAS Procedures . 203

PART 2 SQL Procedure Reference 207

Chapter 7 • SQL Procedure . 209
Overview . 210
Syntax: SQL Procedure . 212
Examples: SQL Procedure . 245

Chapter 8 • SQL SELECT Statement Clauses . 291
Dictionary . 291

Chapter 9 • SQL Procedure Components . 305
Overview . 305
Dictionary . 306

PART 3 Appendixes 359

Appendix 1 • SQL Macro Variables and System Options . 361
Dictionary . 361

Appendix 2 • PROC SQL and the ANSI Standard . 373

Appendix 3 • Source for SQL Examples . 379
Overview . 379
EMPLOYEES . 379
HOUSES . 380
MATCH_11 . 380
PROCLIB.DELAY . 381

iv Contents

PROCLIB.HOUSES . 382
PROCLIB.MARCH . 383
PROCLIB.PAYLIST2 . 384
PROCLIB.PAYROLL . 384
PROCLIB.PAYROLL2 . 387
PROCLIB.SCHEDULE2 . 388
PROCLIB.STAFF . 388
PROCLIB.STAFF2 . 391
PROCLIB.SUPERV2 . 391
STORES . 392
SURVEY . 392

Glossary . 393
Index . 397

Contents v

vi Contents

About This Book

Syntax Conventions for the SAS Language

Overview of Syntax Conventions for the SAS Language
SAS uses standard conventions in the documentation of syntax for SAS language
elements. These conventions enable you to easily identify the components of SAS
syntax. The conventions can be divided into these parts:

• syntax components

• style conventions

• special characters

• references to SAS libraries and external files

Syntax Components
The components of the syntax for most language elements include a keyword and
arguments. For some language elements, only a keyword is necessary. For other
language elements, the keyword is followed by an equal sign (=).

keyword
specifies the name of the SAS language element that you use when you write your
program. Keyword is a literal that is usually the first word in the syntax. In a CALL
routine, the first two words are keywords.

In the following examples of SAS syntax, the keywords are the first words in the
syntax:

CHAR (string, position)
CALL RANBIN (seed, n, p, x);
ALTER (alter-password)
BEST w.
REMOVE <data-set-name>

In the following example, the first two words of the CALL routine are the keywords:

CALL RANBIN(seed, n, p, x)

The syntax of some SAS statements consists of a single keyword without arguments:

DO;
... SAS code ...

vii

END;

Some system options require that one of two keyword values be specified:

DUPLEX | NODUPLEX

argument
specifies a numeric or character constant, variable, or expression. Arguments follow
the keyword or an equal sign after the keyword. The arguments are used by SAS to
process the language element. Arguments can be required or optional. In the syntax,
optional arguments are enclosed between angle brackets.

In the following example, string and position follow the keyword CHAR. These
arguments are required arguments for the CHAR function:

CHAR (string, position)

Each argument has a value. In the following example of SAS code, the argument
string has a value of 'summer', and the argument position has a value of
4:x=char('summer', 4);

In the following example, string and substring are required arguments, while
modifiers and startpos are optional.

FIND(string, substring <,modifiers> <,startpos>

Note: In most cases, example code in SAS documentation is written in lowercase with a
monospace font. You can use uppercase, lowercase, or mixed case in the code that
you write.

Style Conventions
The style conventions that are used in documenting SAS syntax include uppercase bold,
uppercase, and italic:

UPPERCASE BOLD
identifies SAS keywords such as the names of functions or statements. In the
following example, the keyword ERROR is written in uppercase bold:

ERROR<message>;

UPPERCASE
identifies arguments that are literals.

In the following example of the CMPMODEL= system option, the literals include
BOTH, CATALOG, and XML:

CMPMODEL = BOTH | CATALOG | XML

italics
identifies arguments or values that you supply. Items in italics represent user-
supplied values that are either one of the following:

• nonliteral arguments In the following example of the LINK statement, the
argument label is a user-supplied value and is therefore written in italics:

LINK label;

• nonliteral values that are assigned to an argument

In the following example of the FORMAT statement, the argument DEFAULT is
assigned the variable default-format:

FORMAT = variable-1 <, ..., variable-nformat><DEFAULT = default-format>;

viii About This Book

Items in italics can also be the generic name for a list of arguments from which you
can choose (for example, attribute-list). If more than one of an item in italics can be
used, the items are expressed as item-1, ..., item-n.

Special Characters
The syntax of SAS language elements can contain the following special characters:

=
an equal sign identifies a value for a literal in some language elements such as
system options.

In the following example of the MAPS system option, the equal sign sets the value
of MAPS:

MAPS = location-of-maps

< >
angle brackets identify optional arguments. Any argument that is not enclosed in
angle brackets is required.

In the following example of the CAT function, at least one item is required:

CAT (item-1 <, ..., item-n>)

|
a vertical bar indicates that you can choose one value from a group of values. Values
that are separated by the vertical bar are mutually exclusive.

In the following example of the CMPMODEL= system option, you can choose only
one of the arguments:

CMPMODEL = BOTH | CATALOG | XML

...
an ellipsis indicates that the argument or group of arguments following the ellipsis
can be repeated. If the ellipsis and the following argument are enclosed in angle
brackets, then the argument is optional.

In the following example of the CAT function, the ellipsis indicates that you can
have multiple optional items:

CAT (item-1 <, ..., item-n>)

'value' or “value”
indicates that an argument enclosed in single or double quotation marks must have a
value that is also enclosed in single or double quotation marks.

In the following example of the FOOTNOTE statement, the argument text is
enclosed in quotation marks:

FOOTNOTE <n> <ods-format-options 'text' | “text”>;

;
a semicolon indicates the end of a statement or CALL routine.

In the following example each statement ends with a semicolon: data namegame;
length color name $8; color = 'black'; name = 'jack'; game =
trim(color) || name; run;

Syntax Conventions for the SAS Language ix

References to SAS Libraries and External Files
Many SAS statements and other language elements refer to SAS libraries and external
files. You can choose whether to make the reference through a logical name (a libref or
fileref) or use the physical filename enclosed in quotation marks. If you use a logical
name, you usually have a choice of using a SAS statement (LIBNAME or FILENAME)
or the operating environment's control language to make the association. Several
methods of referring to SAS libraries and external files are available, and some of these
methods depend on your operating environment.

In the examples that use external files, SAS documentation uses the italicized phrase
file-specification. In the examples that use SAS libraries, SAS documentation uses the
italicized phrase SAS-library. Note that SAS-library is enclosed in quotation marks:

infile file-specification obs = 100;
libname libref 'SAS-library';

x About This Book

What’s New in the SAS 9.3 SQL
Procedure

Overview

PROC SQL reference information from the Base SAS Procedures Guide and SAS SQL
system options from the SAS Language Reference: Dictionary have been moved to this
book, SAS SQL Procedure User’s Guide. This enables our customers to access PROC
SQL information in one location. The following are new features and enhancements:

• ability to optimize the PUT function

• ability to reuse the LIBNAME statement database connection

• additional PROC SQL statement options

• additional macro variable specifications for the INTO clause

• additional dictionary table

• additional system macro variable

• updated output examples

In the second maintenance release for SAS 9.3, the following enhancements have been
made:

• modified the default value for the SQLGENERATION= option

• added security for password-protected SAS views

Ability to Optimize the PUT Function

The following reduce PUT options and system options have been modified to optimize
the PUT function:

• REDUCEPUTOBS=

• REDUCEPUTVALUES=

• SQLREDUCEPUTOBS=

• SQLREDUCEPUTVALUES=

xi

Ability to Reuse the LIBNAME Statement
Database Connection

The database connection that is established with the LIBNAME statement can be reused
in the CONNECT statement. The keyword USING has been added to implement this
feature.

Additional PROC SQL Statement Options

The following PROC SQL statement options have been added to help control execution
and output of results:

• STOPONTRUNC

• WARNRECURS | NOWARNRECURS

Additional Macro Variable Specifications for the
INTO Clause

The following macro variable specifications have been added to the syntax for the INTO
clause of the SELECT statement:

• TRIMMED option

• unbounded macro-variable range

Additional Dictionary Table

The VIEW_SOURCES dictionary table view has been added.

Additional System Macro Variable

The SYS_SQLSETLIMIT macro variable has been added for use with PROC SQL to
improve database processing.

xii SQL Procedure

Updated Output Examples

Where applicable, all of the LISTING output examples have been updated to show the
new ODS HTML output. The new SAS 9.3 output defaults apply only to the SAS
windowing environment under Microsoft Windows and UNIX. For more information,
see Chapter 1, “New Output Defaults in SAS 9.3,” in SAS Output Delivery System:
User's Guide.

Modified the Default Value for the
SQLGENERATION= Option

The default value for the SQLGENERATION= LIBNAME option and system option
was modified to include Aster nCluster and Greenplum. For more information, see
“SQLGENERATION= System Option” on page 362.

Added Security for Password-Protected SAS
Views

In the second maintenance release for SAS 9.3, security has been enhanced for
password-protected SAS views. Before the second maintenance release for SAS 9.3,
Read- or Write-protected SAS views could be defined using the DESCRIBE VIEW
statement without having to specify a password. Now, to define any password-protected
SAS view, regardless of the level of protection, you must specify a password. If the SAS
view was created with more than one password, you must specify its most restrictive
password if you want to access a definition of the view. For more information, see
“DESCRIBE Statement” on page 237.

Added Security for Password-Protected SAS Views xiii

xiv SQL Procedure

Recommended Reading

• Base SAS Procedures Guide

• Cody's Data Cleaning Techniques Using SAS Software

• Combining and Modifying SAS Data Sets: Examples

• SAS/GRAPH: Reference

• SAS Language Reference: Concepts

• SAS Language Reference: Dictionary

• SAS Macro Language: Reference

For a complete list of SAS publications, go to support.sas.com/bookstore. If you have
questions about which titles you need, please contact a SAS Publishing Sales
Representative:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-3228
Fax: 1-919-677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

xv

mailto:sasbook@sas.com
http://support.sas.com/bookstore

xvi Recommended Reading

Part 1

Using the SQL Procedure

Chapter 1
Introduction to the SQL Procedure . 3

Chapter 2
Retrieving Data from a Single Table . 19

Chapter 3
Retrieving Data from Multiple Tables . 73

Chapter 4
Creating and Updating Tables and Views . 109

Chapter 5
Programming with the SQL Procedure . 135

Chapter 6
Practical Problem-Solving with PROC SQL . 171

1

2

Chapter 1

Introduction to the SQL Procedure

What Is SQL? . 3

What Is the SQL Procedure? . 3

Terminology . 4
Tables . 4
Queries . 4
Views . 5
Null Values . 5

Comparing PROC SQL with the SAS DATA Step . 5

Notes about the Example Tables . 7

What Is SQL?
Structured Query Language (SQL) is a standardized, widely used language that retrieves
and updates data in relational tables and databases.

A relation is a mathematical concept that is similar to the mathematical concept of a set.
Relations are represented physically as two-dimensional tables that are arranged in rows
and columns. Relational theory was developed by E. F. Codd, an IBM researcher, and
first implemented at IBM in a prototype called System R. This prototype evolved into
commercial IBM products based on SQL. The Structured Query Language is now in the
public domain and is part of many vendors' products.

What Is the SQL Procedure?
The SQL procedure is the Base SAS implementation of Structured Query Language.
PROC SQL is part of Base SAS software, and you can use it with any SAS data set
(table). Often, PROC SQL can be an alternative to other SAS procedures or the DATA
step. You can use SAS language elements such as global statements, data set options,
functions, informats, and formats with PROC SQL just as you can with other SAS
procedures. PROC SQL enables you to perform the following tasks:

• generate reports

• generate summary statistics

• retrieve data from tables or views

3

• combine data from tables or views

• create tables, views, and indexes

• update the data values in PROC SQL tables

• update and retrieve data from database management system (DBMS) tables

• modify a PROC SQL table by adding, modifying, or dropping columns

PROC SQL can be used in an interactive SAS session or within batch programs, and it
can include global statements, such as TITLE and OPTIONS.

Terminology

Tables
A PROC SQL table is the same as a SAS data file. It is a SAS file of type DATA. PROC
SQL tables consist of rows and columns. The rows correspond to observations in SAS
data files, and the columns correspond to variables. The following table lists equivalent
terms that are used in SQL, SAS, and traditional data processing.

Table 1.1 Comparing Equivalent Terms

SQL Term SAS Term Data Processing Term

table SAS data file file

row observation record

column variable field

You can create and modify tables by using the SAS DATA step, or by using the PROC
SQL statements that are described in Chapter 4, “Creating and Updating Tables and
Views,” on page 109. Other SAS procedures and the DATA step can read and update
tables that are created with PROC SQL.

SAS data files can have a one-level name or a two-level name. Typically, the names of
temporary SAS data files have only one level, and the data files are stored in the WORK
library. PROC SQL assumes that SAS data files that are specified with a one-level name
are to be read from or written to the WORK library, unless you specify a USER library.
You can assign a USER library with a LIBNAME statement or with the SAS system
option USER=. For more information about how to work with SAS data files and
libraries, see “Temporary and Permanent SAS Data Sets” in Chapter 2 of Base SAS
Procedures Guide.

DBMS tables are tables that were created with other software vendors' database
management systems. PROC SQL can connect to, update, and modify DBMS tables,
with some restrictions. For more information, see “Accessing a DBMS with
SAS/ACCESS Software” on page 162.

Queries
Queries retrieve data from a table, view, or DBMS. A query returns a query result, which
consists of rows and columns from a table. With PROC SQL, you use a SELECT

4 Chapter 1 • Introduction to the SQL Procedure

statement and its subordinate clauses to form a query. Chapter 2, “Retrieving Data from
a Single Table,” on page 19 describes how to build a query.

Views
PROC SQL views do not actually contain data as tables do. Rather, a PROC SQL view
contains a stored SELECT statement or query. The query executes when you use the
view in a SAS procedure or DATA step. When a view executes, it displays data that is
derived from existing tables, from other views, or from SAS/ACCESS views. Other SAS
procedures and the DATA step can use a PROC SQL view as they would any SAS data
file. For more information about views, see Chapter 4, “Creating and Updating Tables
and Views,” on page 109.

Note: When you process PROC SQL views between a client and a server, getting the
correct results depends on the compatibility between the client and server
architecture. For more information, see “Accessing a SAS View” in Chapter 17 of
SAS/CONNECT User's Guide.

Null Values
According to the ANSI standard for SQL, a missing value is called a null value. It is not
the same as a blank or zero value. However, to be compatible with the rest of SAS,
PROC SQL treats missing values the same as blanks or zero values, and considers all
three to be null values. This important concept comes up in several places in this
document.

Comparing PROC SQL with the SAS DATA Step
PROC SQL can perform some of the operations that are provided by the DATA step and
the PRINT, SORT, and SUMMARY procedures. The following query displays the total
population of all the large countries (countries with population greater than 1 million) on
each continent.

proc sql;
 title 'Population of Large Countries Grouped by Continent';
 select Continent, sum(Population) as TotPop format=comma15.
 from sql.countries
 where Population gt 1000000
 group by Continent
 order by TotPop;
quit;

Comparing PROC SQL with the SAS DATA Step 5

Output 1.1 Sample SQL Output

Here is a SAS program that produces the same result.

title 'Large Countries Grouped by Continent';
proc summary data=sql.countries;
 where Population > 1000000;
 class Continent;
 var Population;
 output out=sumPop sum=TotPop;
run;

proc sort data=SumPop;
 by totPop;
run;

proc print data=SumPop noobs;
 var Continent TotPop;
 format TotPop comma15.;
 where _type_=1;
run;

6 Chapter 1 • Introduction to the SQL Procedure

Output 1.2 Sample DATA Step Output

This example shows that PROC SQL can achieve the same results as Base SAS software
but often with fewer and shorter statements. The SELECT statement that is shown in this
example performs summation, grouping, sorting, and row selection. It also displays the
query's results without the PRINT procedure.

PROC SQL executes without using the RUN statement. After you invoke PROC SQL
you can submit additional SQL procedure statements without submitting the PROC
statement again. Use the QUIT statement to terminate the procedure.

Notes about the Example Tables
For all examples, the following global statement is in effect:

libname sql 'SAS-data-library';

The tables that are used in this document contain geographic and demographic data. The
data is intended to be used for the PROC SQL code examples only; it is not necessarily
up-to-date or accurate.

Note: You can find instructions for downloading these data sets at http://
ftp.sas.com/samples/A56936. These data sets are valid for SAS 9 as well as
previous versions of SAS.

Notes about the Example Tables 7

http://ftp.sas.com/samples/A56936
http://ftp.sas.com/samples/A56936

The COUNTRIES table contains data that pertains to countries. The Area column
contains a country's area in square miles. The UNDate column contains the year a
country entered the United Nations, if applicable.

Output 1.3 COUNTRIES (Partial Output)

The WORLDCITYCOORDS table contains latitude and longitude data for world cities.
Cities in the Western hemisphere have negative longitude coordinates. Cities in the

8 Chapter 1 • Introduction to the SQL Procedure

Southern hemisphere have negative latitude coordinates. Coordinates are rounded to the
nearest degree.

Output 1.4 WORLDCITYCOORDS (Partial Output)

Notes about the Example Tables 9

The USCITYCOORDS table contains the coordinates for cities in the United States.
Because all cities in this table are in the Western hemisphere, all of the longitude
coordinates are negative. Coordinates are rounded to the nearest degree.

Output 1.5 USCITYCOORDS (Partial Output)

10 Chapter 1 • Introduction to the SQL Procedure

The UNITEDSTATES table contains data that is associated with the states. The
Statehood column contains the date when the state was admitted into the Union.

Output 1.6 UNITEDSTATES (Partial Output)

Notes about the Example Tables 11

The POSTALCODES table contains postal code abbreviations.

Output 1.7 POSTALCODES (Partial Output)

12 Chapter 1 • Introduction to the SQL Procedure

The WORLDTEMPS table contains average high and low temperatures from various
international cities.

Output 1.8 WORLDTEMPS (Partial Output)

Notes about the Example Tables 13

The OILPROD table contains oil production statistics from oil-producing countries.

Output 1.9 OILPROD (Partial Output)

14 Chapter 1 • Introduction to the SQL Procedure

The OILRSRVS table lists approximate oil reserves of oil-producing countries.

Output 1.10 OILRSRVS (Partial Output)

Notes about the Example Tables 15

The CONTINENTS table contains geographic data that relates to world continents.

Output 1.11 CONTINENTS

16 Chapter 1 • Introduction to the SQL Procedure

The FEATURES table contains statistics that describe various types of geographical
features, such as oceans, lakes, and mountains.

Output 1.12 FEATURES (Partial Output)

Notes about the Example Tables 17

18 Chapter 1 • Introduction to the SQL Procedure

Chapter 2

Retrieving Data from a Single
Table

Overview of the SELECT Statement . 20
How to Use the SELECT Statement . 20
SELECT and FROM Clauses . 20
WHERE Clause . 21
ORDER BY Clause . 21
GROUP BY Clause . 21
HAVING Clause . 21
Ordering the SELECT Statement . 22

Selecting Columns in a Table . 22
Selecting All Columns in a Table . 22
Selecting Specific Columns in a Table . 23
Eliminating Duplicate Rows from the Query Results . 25
Determining the Structure of a Table . 27

Creating New Columns . 27
Adding Text to Output . 27
Calculating Values . 29
Assigning a Column Alias . 30
Referring to a Calculated Column by Alias . 31
Assigning Values Conditionally . 32
Replacing Missing Values . 35
Specifying Column Attributes . 36

Sorting Data . 37
Overview of Sorting Data . 37
Sorting by Column . 38
Sorting by Multiple Columns . 38
Specifying a Sort Order . 39
Sorting by Calculated Column . 40
Sorting by Column Position . 41
Sorting by Columns That Are Not Selected . 42
Specifying a Different Sorting Sequence . 43
Sorting Columns That Contain Missing Values . 43

Retrieving Rows That Satisfy a Condition . 44
Using a Simple WHERE Clause . 44
Retrieving Rows Based on a Comparison . 45
Retrieving Rows That Satisfy Multiple Conditions . 47
Using Other Conditional Operators . 49
Using Truncated String Comparison Operators . 53
Using a WHERE Clause with Missing Values . 54

Summarizing Data . 56

19

Overview of Summarizing Data . 56
Using Aggregate Functions . 56
Summarizing Data with a WHERE Clause . 57
Displaying Sums . 58
Combining Data from Multiple Rows into a Single Row . 59
Remerging Summary Statistics . 59
Using Aggregate Functions with Unique Values . 61
Summarizing Data with Missing Values . 62

Grouping Data . 64
Grouping by One Column . 64
Grouping without Summarizing . 64
Grouping by Multiple Columns . 65
Grouping and Sorting Data . 66
Grouping with Missing Values . 67

Filtering Grouped Data . 69
Overview of Filtering Grouped Data . 69
Using a Simple HAVING Clause . 69
Choosing between HAVING and WHERE . 70
Using HAVING with Aggregate Functions . 70

Validating a Query . 71

Overview of the SELECT Statement

How to Use the SELECT Statement
This chapter shows you how to perform the following tasks:

• retrieve data from a single table by using the SELECT statement

• validate the correctness of a SELECT statement by using the VALIDATE statement

With the SELECT statement, you can retrieve data from tables or data that is described
by SAS data views.

Note: The examples in this chapter retrieve data from tables that are SAS data sets.
However, you can use all of the operations that are described here with SAS data
views.

The SELECT statement is the primary tool of PROC SQL. You use it to identify,
retrieve, and manipulate columns of data from a table. You can also use several optional
clauses within the SELECT statement to place restrictions on a query.

SELECT and FROM Clauses
The following simple SELECT statement is sufficient to produce a useful result:

select Name
 from sql.countries;

The SELECT statement must contain a SELECT clause and a FROM clause, both of
which are required in a PROC SQL query. This SELECT statement contains the
following:

• a SELECT clause that lists the Name column

20 Chapter 2 • Retrieving Data from a Single Table

• a FROM clause that lists the table in which the Name column resides

WHERE Clause
The WHERE clause enables you to restrict the data that you retrieve by specifying a
condition that each row of the table must satisfy. PROC SQL output includes only those
rows that satisfy the condition. The following SELECT statement contains a WHERE
clause that restricts the query output to only those countries that have a population that is
greater than 5,000,000 people:

select Name
 from sql.countries
 where Population gt 5000000;

ORDER BY Clause
The ORDER BY clause enables you to sort the output from a table by one or more
columns. That is, you can put character values in either ascending or descending
alphabetical order, and you can put numerical values in either ascending or descending
numerical order. The default order is ascending. For example, you can modify the
previous example to list the data by descending population:

select Name
 from sql.countries
 where Population gt 5000000
 order by Population desc;

GROUP BY Clause
The GROUP BY clause enables you to break query results into subsets of rows. When
you use the GROUP BY clause, you use an aggregate function in the SELECT clause or
a HAVING clause to instruct PROC SQL how to group the data. For details about
aggregate functions, see “Summarizing Data” on page 56. PROC SQL calculates the
aggregate function separately for each group. When you do not use an aggregate
function, PROC SQL treats the GROUP BY clause as if it were an ORDER BY clause,
and any aggregate functions are applied to the entire table.

The following query uses the SUM function to list the total population of each continent.
The GROUP BY clause groups the countries by continent, and the ORDER BY clause
puts the continents in alphabetical order:

select Continent, sum(Population)
 from sql.countries
 group by Continent
 order by Continent;

HAVING Clause
The HAVING clause works with the GROUP BY clause to restrict the groups in a
query's results based on a given condition. PROC SQL applies the HAVING condition
after grouping the data and applying aggregate functions. For example, the following
query restricts the groups to include only the continents of Asia and Europe:

Overview of the SELECT Statement 21

select Continent, sum(Population)
 from sql.countries
 group by Continent
 having Continent in ('Asia', 'Europe')
 order by Continent;

Ordering the SELECT Statement
When you construct a SELECT statement, you must specify the clauses in the following
order:

1. SELECT

2. FROM

3. WHERE

4. GROUP BY

5. HAVING

6. ORDER BY

Note: Only the SELECT and FROM clauses are required.

The PROC SQL SELECT statement and its clauses are discussed in further detail in the
following sections.

Selecting Columns in a Table
When you retrieve data from a table, you can select one or more columns by using
variations of the basic SELECT statement.

Selecting All Columns in a Table
Use an asterisk in the SELECT clause to select all columns in a table. The following
example selects all columns in the SQL.USCITYCOORDS table, which contains
latitude and longitude values for U.S. cities:

libname sql 'SAS-library';

proc sql outobs=12;
 title 'U.S. Cities with Their States and Coordinates';
 select *
 from sql.uscitycoords;

Note: The OUTOBS= option limits the number of rows (observations) in the output.
OUTOBS= is similar to the OBS= data set option. OUTOBS= is used throughout
this document to limit the number of rows that are displayed in examples.

Note: In the tables used in these examples, latitude values that are south of the Equator
are negative. Longitude values that are west of the Prime Meridian are also negative.

22 Chapter 2 • Retrieving Data from a Single Table

Output 2.1 Selecting All Columns in a Table

Note: When you select all columns, PROC SQL displays the columns in the order in
which they are stored in the table.

Selecting Specific Columns in a Table
To select a specific column in a table, list the name of the column in the SELECT clause.
The following example selects only the City column in the SQL.USCITYCOORDS
table:

libname sql 'SAS-library';

proc sql outobs=12;
 title 'Names of U.S. Cities';
 select City
 from sql.uscitycoords;

Selecting Columns in a Table 23

Output 2.2 Selecting One Column

If you want to select more than one column, then you must separate the names of the
columns with commas, as in this example, which selects the City and State columns in
the SQL.USCITYCOORDS table:

libname sql 'SAS-library';

proc sql outobs=12;
 title 'U.S. Cities and Their States';
 select City, State
 from sql.uscitycoords;

24 Chapter 2 • Retrieving Data from a Single Table

Output 2.3 Selecting Multiple Columns

Note: When you select specific columns, PROC SQL displays the columns in the order
in which you specify them in the SELECT clause.

Eliminating Duplicate Rows from the Query Results
In some cases, you might want to find only the unique values in a column. For example,
if you want to find the unique continents in which U.S. states are located, then you might
begin by constructing the following query:

libname sql 'SAS-library';

proc sql outobs=12;
 title 'Continents of the United States';
 select Continent
 from sql.unitedstates;

Selecting Columns in a Table 25

Output 2.4 Selecting a Column with Duplicate Values

You can eliminate the duplicate rows from the results by using the DISTINCT keyword
in the SELECT clause. Compare the previous example with the following query, which
uses the DISTINCT keyword to produce a single row of output for each continent that is
in the SQL.UNITEDSTATES table:

libname sql 'SAS-library';

proc sql;
 title 'Continents of the United States';
 select distinct Continent
 from sql.unitedstates;

Output 2.5 Eliminating Duplicate Values

Note: When you specify all of a table's columns in a SELECT clause with the
DISTINCT keyword, PROC SQL eliminates duplicate rows, or rows in which the
values in all of the columns match, from the results.

26 Chapter 2 • Retrieving Data from a Single Table

Determining the Structure of a Table
To obtain a list of all of the columns in a table and their attributes, you can use the
DESCRIBE TABLE statement. The following example generates a description of the
SQL.UNITEDSTATES table. PROC SQL writes the description to the log.

libname sql 'SAS-library';

proc sql;
 describe table sql.unitedstates;

Log 2.1 Determining the Structure of a Table (Partial Log)

NOTE: SQL table SQL.UNITEDSTATES was created like:

create table SQL.UNITEDSTATES(bufsize=12288)
 (
 Name char(35) format=$35. informat=$35. label='Name',
 Capital char(35) format=$35. informat=$35. label='Capital',
 Population num format=BEST8. informat=BEST8. label='Population',
 Area num format=BEST8. informat=BEST8.,
 Continent char(35) format=$35. informat=$35. label='Continent',
 Statehood num
);

Creating New Columns
In addition to selecting columns that are stored in a table, you can create new columns
that exist for the duration of the query. These columns can contain text or calculations.
PROC SQL writes the columns that you create as if they were columns from the table.

Adding Text to Output
You can add text to the output by including a string expression, or literal expression, in a
query. The following query includes two strings as additional columns in the output:

libname sql 'SAS-library';

proc sql outobs=12;
 title 'U.S. Postal Codes';
 select 'Postal code for', Name, 'is', Code
 from sql.postalcodes;

Creating New Columns 27

Output 2.6 Adding Text to Output

To prevent the column headings Name and Code from printing, you can assign a label
that starts with a special character to each of the columns. PROC SQL does not output
the column name when a label is assigned, and it does not output labels that begin with
special characters. For example, you could use the following query to suppress the
column headings that PROC SQL displayed in the previous example:

libname sql 'SAS-library';

proc sql outobs=12;
 title 'U.S. Postal Codes';
 select 'Postal code for', Name label='#', 'is', Code label='#'
 from sql.postalcodes;

28 Chapter 2 • Retrieving Data from a Single Table

Output 2.7 Suppressing Column Headings in Output

Calculating Values
You can perform calculations with values that you retrieve from numeric columns. The
following example converts temperatures in the SQL.WORLDTEMPS table from
Fahrenheit to Celsius:

libname sql 'SAS-library';

proc sql outobs=12;
 title 'Low Temperatures in Celsius';
 select City, (AvgLow - 32) * 5/9 format=4.1
 from sql.worldtemps;

Note: This example uses the FORMAT attribute to modify the format of the calculated
output. For more information, see “Specifying Column Attributes” on page 36.

Creating New Columns 29

Output 2.8 Calculating Values

Assigning a Column Alias
By specifying a column alias, you can assign a new name to any column within a PROC
SQL query. The new name must follow the rules for SAS names. The name persists only
for that query.

When you use an alias to name a column, you can use the alias to reference the column
later in the query. PROC SQL uses the alias as the column heading in output. The
following example assigns an alias of LowCelsius to the calculated column from the
previous example:

libname sql 'SAS-library';

proc sql outobs=12;
 title 'Low Temperatures in Celsius';
 select City, (AvgLow - 32) * 5/9 as LowCelsius format=4.1
 from sql.worldtemps;

30 Chapter 2 • Retrieving Data from a Single Table

Output 2.9 Assigning a Column Alias to a Calculated Column

Referring to a Calculated Column by Alias
When you use a column alias to refer to a calculated value, you must use the
CALCULATED keyword with the alias to inform PROC SQL that the value is
calculated within the query. The following example uses two calculated values, LowC
and HighC, to calculate a third value, Range:

libname sql 'SAS-library';

proc sql outobs=12;
 title 'Range of High and Low Temperatures in Celsius';
 select City, (AvgHigh - 32) * 5/9 as HighC format=5.1,
 (AvgLow - 32) * 5/9 as LowC format=5.1,
 (calculated HighC - calculated LowC)
 as Range format=4.1
 from sql.worldtemps;

Note: You can use an alias to refer to a calculated column in a SELECT clause, a
WHERE clause, or ORDER BY clause.

Creating New Columns 31

Output 2.10 Referring to a Calculated Column by Alias

Note: Because this query sets a numeric format of 4.1 on the HighC, LowC, and Range
columns, the values in those columns are rounded to the nearest tenth. As a result of
the rounding, some of the values in the HighC and LowC columns do not reflect the
range value output for the Range column. When you round numeric data values, this
type of error sometimes occurs. If you want to avoid this problem, then you can
specify additional decimal places in the format.

Assigning Values Conditionally

Using a Simple CASE Expression
CASE expressions enable you to interpret and change some or all of the data values in a
column to make the data more useful or meaningful.

You can use conditional logic within a query by using a CASE expression to
conditionally assign a value. You can use a CASE expression anywhere that you can use
a column name.

The following table, which is used in the next example, describes the world climate
zones (rounded to the nearest degree) that exist between Location 1 and Location 2:

32 Chapter 2 • Retrieving Data from a Single Table

Table 2.1 World Climate Zones

Climate zone Location 1

Latitude
at
Location
1 Location 2

Latitude
at
Location
2

North Frigid North Pole 90 Arctic Circle 67

North
Temperate

Arctic Circle 67 Tropic of Cancer 23

Torrid Tropic of Cancer 23 Tropic of Capricorn -23

South
Temperate

Tropic of Capricorn -23 Antarctic Circle -67

South Frigid Antarctic Circle -67 South Pole -90

In this example, a CASE expression determines the climate zone for each city based on
the value in the Latitude column in the SQL.WORLDCITYCOORDS table. The query
also assigns an alias of ClimateZone to the value. You must close the CASE logic with
the END keyword.

libname sql 'SAS-library';

proc sql outobs=12;
 title 'Climate Zones of World Cities';
 select City, Country, Latitude,
 case
 when Latitude gt 67 then 'North Frigid'
 when 67 ge Latitude ge 23 then 'North Temperate'
 when 23 gt Latitude gt -23 then 'Torrid'
 when -23 ge Latitude ge -67 then 'South Temperate'
 else 'South Frigid'
 end as ClimateZone
 from sql.worldcitycoords
 order by City;

Creating New Columns 33

Output 2.11 Using a Simple CASE Expression

Using the CASE-OPERAND Form
You can also construct a CASE expression by using the CASE-OPERAND form, as in
the following example. This example selects states and assigns them to a region based on
the value of the Continent column:

libname sql 'SAS-library';

proc sql outobs=12;
 title 'Assigning Regions to Continents';
 select Name, Continent,
 case Continent
 when 'North America' then 'Continental U.S.'
 when 'Oceania' then 'Pacific Islands'
 else 'None'
 end as Region
 from sql.unitedstates;

Note: When you use the CASE-OPERAND form of the CASE expression, the
conditions must all be equality tests. That is, they cannot use comparison operators
or other types of operators, as are used in “Using a Simple CASE Expression” on
page 32.

34 Chapter 2 • Retrieving Data from a Single Table

Output 2.12 Using a CASE Expression in the CASE-OPERAND Form

Replacing Missing Values
The COALESCE function enables you to replace missing values in a column with a new
value that you specify. For every row that the query processes, the COALESCE function
checks each of its arguments until it finds a nonmissing value, and then returns that
value. If all of the arguments are missing values, then the COALESCE function returns a
missing value. For example, the following query replaces missing values in the
LowPoint column in the SQL.CONTINENTS table with the words Not Available:

libname sql 'SAS-library';

proc sql;
 title 'Continental Low Points';
 select Name, coalesce(LowPoint, 'Not Available') as LowPoint
 from sql.continents;

Creating New Columns 35

Output 2.13 Using the COALESCE Function to Replace Missing Values

The following CASE expression shows another way to perform the same replacement of
missing values. However, the COALESCE function requires fewer lines of code to
obtain the same results:

libname sql 'SAS-library';

proc sql;
 title 'Continental Low Points';
 select Name, case
 when LowPoint is missing then 'Not Available'
 else Lowpoint
 end as LowPoint
 from sql.continents;

Specifying Column Attributes
You can specify the following column attributes, which determine how SAS data is
displayed:

• FORMAT=

• INFORMAT=

• LABEL=

• LENGTH=

If you do not specify these attributes, then PROC SQL uses attributes that are already
saved in the table or, if no attributes are saved, then it uses the default attributes.

The following example assigns a label of State to the Name column and a format of
COMMA10. to the Area column:

libname sql 'SAS-library';

proc sql outobs=12;

36 Chapter 2 • Retrieving Data from a Single Table

 title 'Areas of U.S. States in Square Miles';
 select Name label='State', Area format=comma10.
 from sql.unitedstates;

Note: Using the LABEL= keyword is optional. For example, the following two select
clauses are the same:

select Name label='State', Area format=comma10.

select Name 'State', Area format=comma10.

Output 2.14 Specifying Column Attributes

Sorting Data

Overview of Sorting Data
You can sort query results with an ORDER BY clause by specifying any of the columns
in the table, including columns that are not selected or columns that are calculated.

Unless an ORDER BY clause is included in the SELECT statement, then a particular
order to the output rows, such as the order in which the rows are encountered in the
queried table, cannot be guaranteed, even if an index is present. Without an ORDER BY
clause, the order of the output rows is determined by the internal processing of PROC
SQL, the default collating sequence of SAS, and your operating environment. Therefore,
if you want your result table to appear in a particular order, then use the ORDER BY
clause.

Sorting Data 37

For more information and examples, see the “ORDER BY Clause” on page 303.

Sorting by Column
The following example selects countries and their populations from the
SQL.COUNTRIES table and orders the results by population:

libname sql 'SAS-library';

proc sql outobs=12;
 title 'Country Populations';
 select Name, Population format=comma10.
 from sql.countries
 order by Population;

Note: When you use an ORDER BY clause, you change the order of the output but not
the order of the rows that are stored in the table.

Note: The PROC SQL default sort order is ascending.

Output 2.15 Sorting by Column

Sorting by Multiple Columns
You can sort by more than one column by specifying the column names, separated by
commas, in the ORDER BY clause. The following example sorts the SQL.COUNTRIES
table by two columns, Continent and Name:

libname sql 'SAS-library';

38 Chapter 2 • Retrieving Data from a Single Table

proc sql outobs=12;
 title 'Countries, Sorted by Continent and Name';
 select Name, Continent
 from sql.countries
 order by Continent, Name;

Output 2.16 Sorting by Multiple Columns

Note: The results list countries without continents first because PROC SQL sorts
missing values first in an ascending sort.

Specifying a Sort Order
To order the results, specify ASC for ascending or DESC for descending. You can
specify a sort order for each column in the ORDER BY clause.

When you specify multiple columns in the ORDER BY clause, the first column
determines the primary row order of the results. Subsequent columns determine the order
of rows that have the same value for the primary sort. The following example sorts the
SQL.FEATURES table by feature type and name:

libname sql 'SAS-library';

proc sql outobs=12;
 title 'World Topographical Features';
 select Name, Type
 from sql.features
 order by Type desc, Name;

Sorting Data 39

Note: The ASC keyword is optional because the PROC SQL default sort order is
ascending.

Output 2.17 Specifying a Sort Order

Sorting by Calculated Column
You can sort by a calculated column by specifying its alias in the ORDER BY clause.
The following example calculates population densities and then performs a sort on the
calculated Density column:

libname sql 'SAS-library';

proc sql outobs=12;
 title 'World Population Densities per Square Mile';
 select Name, Population format=comma12., Area format=comma8.,
 Population/Area as Density format=comma10.
 from sql.countries
 order by Density desc;

40 Chapter 2 • Retrieving Data from a Single Table

Output 2.18 Sorting by Calculated Column

Sorting by Column Position
You can sort by any column within the SELECT clause by specifying its numerical
position. By specifying a position instead of a name, you can sort by a calculated column
that has no alias. The following example does not assign an alias to the calculated
density column. Instead, the column position of 4 in the ORDER BY clause refers to the
position of the calculated column in the SELECT clause:

libname sql 'SAS-library';

proc sql outobs=12;
 title 'World Population Densities per Square Mile';
 select Name, Population format=comma12., Area format=comma8.,
 Population/Area format=comma10. label='Density'
 from sql.countries
 order by 4 desc;

Note: PROC SQL uses a label, if one has been assigned, as a heading for a column that
does not have an alias.

Sorting Data 41

Output 2.19 Sorting by Column Position

Sorting by Columns That Are Not Selected
You can sort query results by columns that are not included in the query. For example,
the following query returns all the rows in the SQL.COUNTRIES table and sorts them
by population, even though the Population column is not included in the query:

libname sql 'SAS-library';

proc sql outobs=12;
 title 'Countries, Sorted by Population';
 select Name, Continent
 from sql.countries
 order by Population;

42 Chapter 2 • Retrieving Data from a Single Table

Output 2.20 Sorting by Columns That Are Not Selected

Specifying a Different Sorting Sequence
SORTSEQ= is a PROC SQL statement option that specifies the sorting sequence for
PROC SQL to use when a query contains an ORDER BY clause. Use this option only if
you want to use a sorting sequence other than your operating environment's default
sorting sequence. Possible values include ASCII, EBCDIC, and some languages other
than English. For example, in an operating environment that supports the EBCDIC
sorting sequence, you could use the following option in the PROC SQL statement to set
the sorting sequence to EBCDIC:

proc sql sortseq=ebcdic;

Note: SORTSEQ= affects only the ORDER BY clause. It does not override your
operating environment's default comparison operations for the WHERE clause.

Operating Environment Information
See the SAS documentation for your operating environment for more information
about the default and other sorting sequences for your operating environment.

Sorting Columns That Contain Missing Values
PROC SQL sorts nulls, or missing values, before character or numeric data. Therefore,
when you specify ascending order, missing values appear first in the query results.

The following example sorts the rows in the CONTINENTS table by the LowPoint
column:

Sorting Data 43

libname sql 'SAS-library';

proc sql;
 title 'Continents, Sorted by Low Point';
 select Name, LowPoint
 from sql.continents
 order by LowPoint;

Because three continents have a missing value in the LowPoint column, those continents
appear first in the output. Note that because the query does not specify a secondary sort,
rows that have the same value in the LowPoint column, such as the first three rows of
output, are not displayed in any particular order. In general, if you do not explicitly
specify a sort order, then PROC SQL output is not guaranteed to be in any particular
order.

Output 2.21 Sorting Columns That Contain Missing Values

Retrieving Rows That Satisfy a Condition
The WHERE clause enables you to retrieve only rows from a table that satisfy a
condition. WHERE clauses can contain any of the columns in a table, including columns
that are not selected.

Using a Simple WHERE Clause
The following example uses a WHERE clause to find all countries that are in the
continent of Europe and their populations:

libname sql 'SAS-library';

proc sql outobs=12;
 title 'Countries in Europe';
 select Name, Population format=comma10.

44 Chapter 2 • Retrieving Data from a Single Table

 from sql.countries
 where Continent = 'Europe';

Output 2.22 Using a Simple WHERE Clause

Retrieving Rows Based on a Comparison
You can use comparison operators in a WHERE clause to select different subsets of
data. The following table lists the comparison operators that you can use:

Table 2.2 Comparison Operators

Symbol
Mnemonic
Equivalent Definition Example

= EQ equal to where Name =
'Asia';

^= or ~= or ¬= or <> NE not equal to where Name ne
'Africa';

> GT greater than where Area >
10000;

< LT less than where Depth <
5000;

Retrieving Rows That Satisfy a Condition 45

Symbol
Mnemonic
Equivalent Definition Example

>= GE greater than or equal
to

where
Statehood >=
'01jan1860'd;

<= LE less than or equal to where
Population <=
5000000;

The following example subsets the SQL.UNITEDSTATES table by including only states
with populations greater than 5,000,000 people:

libname sql 'SAS-library';

proc sql;
 title 'States with Populations over 5,000,000';
 select Name, Population format=comma10.
 from sql.unitedstates
 where Population gt 5000000
 order by Population desc;

46 Chapter 2 • Retrieving Data from a Single Table

Output 2.23 Retrieving Rows Based on a Comparison

Retrieving Rows That Satisfy Multiple Conditions
You can use logical, or Boolean, operators to construct a WHERE clause that contains
two or more expressions. The following table lists the logical operators that you can use:

Table 2.3 Logical (Boolean) Operators

Symbol
Mnemonic
Equivalent Definition Example

& AND specifies that both the
previous and following
conditions must be true

Continent =
'Asia' and
Population >
5000000

Retrieving Rows That Satisfy a Condition 47

Symbol
Mnemonic
Equivalent Definition Example

! or | or ¦ OR specifies that either the
previous or the
following condition
must be true

Population <
1000000 or
Population >
5000000

^ or ~ or ¬ NOT specifies that the
following condition
must be false

Continent not
'Africa'

The following example uses two expressions to include only countries that are in Africa
and that have a population greater than 20,000,000 people:

libname sql 'SAS-library';

proc sql;
 title 'Countries in Africa with Populations over 20,000,000';
 select Name, Population format=comma10.
 from sql.countries
 where Continent = 'Africa' and Population gt 20000000
 order by Population desc;

Output 2.24 Retrieving Rows That Satisfy Multiple Conditions

Note: You can use parentheses to improve the readability of WHERE clauses that
contain multiple, or compound, expressions, such as the following:

where (Continent = 'Africa' and Population gt 2000000) or
 (Continent = 'Asia' and Population gt 1000000)

48 Chapter 2 • Retrieving Data from a Single Table

Using Other Conditional Operators

Overview of Using Other Conditional Operators
You can use many different conditional operators in a WHERE clause. The following
table lists other operators that you can use:

Table 2.4 Conditional Operators

Operator Definition Example

ANY specifies that at least one
of a set of values
obtained from a
subquery must satisfy a
given condition

where Population > any
(select Population from
sql.countries)

ALL specifies that all of the
values obtained from a
subquery must satisfy a
given condition

where Population > all
(select Population from
sql.countries)

BETWEEN-AND tests for values within an
inclusive range

where Population between
1000000 and 5000000

CONTAINS tests for values that
contain a specified string

where Continent contains
'America';

EXISTS tests for the existence of
a set of values obtained
from a subquery

where exists (select *
from sql.oilprod);

IN tests for values that
match one of a list of
values

where Name in ('Africa',
'Asia');

IS NULL or IS MISSING tests for missing values where Population is
missing;

LIKE tests for values that
match a specified
pattern1

where Continent like 'A
%';

=* tests for values that
sound like a specified
value

where Name =* 'Tiland';

Note: All of these operators can be prefixed with the NOT operator to form a negative
condition.

1 You can use a percent symbol (%) to match any number of characters. You can use an underscore (_) to match one arbitrary
character.

Retrieving Rows That Satisfy a Condition 49

Using the IN Operator
The IN operator enables you to include values within a list that you supply. The
following example uses the IN operator to include only the mountains and waterfalls in
the SQL.FEATURES table:

libname sql 'SAS-library';

proc sql outobs=12;
 title 'World Mountains and Waterfalls';
 select Name, Type, Height format=comma10.
 from sql.features
 where Type in ('Mountain', 'Waterfall')
 order by Height;

Output 2.25 Using the IN Operator

Using the IS MISSING Operator
The IS MISSING operator enables you to identify rows that contain columns with
missing values. The following example selects countries that are not located on a
continent. That is, these countries have a missing value in the Continent column:

proc sql;
 title 'Countries with Missing Continents';
 select Name, Continent
 from sql.countries
 where Continent is missing;

Note: The IS NULL operator is the same as, and interchangeable with, the IS MISSING
operator.

50 Chapter 2 • Retrieving Data from a Single Table

Output 2.26 Using the IS MISSING Operator

Using the BETWEEN-AND Operators
To select rows based on a range of values, you can use the BETWEEN-AND operators.
This example selects countries that have latitudes within five degrees of the Equator:

proc sql outobs=12;
 title 'Equatorial Cities of the World';
 select City, Country, Latitude
 from sql.worldcitycoords
 where Latitude between -5 and 5;

Note: In the tables used in these examples, latitude values that are south of the Equator
are negative. Longitude values that are west of the Prime Meridian are also negative.

Note: Because the BETWEEN-AND operators are inclusive, the values that you specify
in the BETWEEN-AND expression are included in the results.

Retrieving Rows That Satisfy a Condition 51

Output 2.27 Using the BETWEEN-AND Operators

Using the LIKE Operator
The LIKE operator enables you to select rows based on pattern matching. For example,
the following query returns all countries in the SQL.COUNTRIES table that begin with
the letter Z and are any number of characters long, or end with the letter a and are five
characters long:

libname sql 'SAS-library';

proc sql;
 title1 'Country Names that Begin with the Letter "Z"';
 title2 'or Are 5 Characters Long and End with the Letter "a"';
 select Name
 from sql.countries
 where Name like 'Z%' or Name like '____a';

52 Chapter 2 • Retrieving Data from a Single Table

Output 2.28 Using the LIKE Operator

The percent sign (%) and underscore (_) are wildcard characters. For more information
about pattern matching with the LIKE comparison operator, see Chapter 7, “SQL
Procedure,” on page 209.

Using Truncated String Comparison Operators
Truncated string comparison operators are used to compare two strings. They differ from
conventional comparison operators in that, before executing the comparison, PROC SQL
truncates the longer string to be the same length as the shorter string. The truncation is
performed internally; neither operand is permanently changed. The following table lists
the truncated comparison operators:

Table 2.5 Truncated String Comparison Operators

Symbol Definition Example

EQT equal to truncated strings where Name eqt 'Aust';

GTT greater than truncated strings where Name gtt 'Bah';

LTT less than truncated strings where Name ltt 'An';

GET greater than or equal to truncated strings where Country get
'United A';

LET less than or equal to truncated strings where Lastname let
'Smith';

Retrieving Rows That Satisfy a Condition 53

Symbol Definition Example

NET not equal to truncated strings where Style net 'TWO';

The following example returns a list of U.S. states that have 'New ' at the beginning of
their names:

proc sql;
 title '"New" U.S. States';
 select Name
 from sql.unitedstates
 where Name eqt 'New ';

Output 2.29 Using a Truncated String Comparison Operator

Using a WHERE Clause with Missing Values
If a column that you specify in a WHERE clause contains missing values, then a query
might provide unexpected results. For example, the following query returns all features
from the SQL.FEATURES table that have a depth of less than 500 feet:

libname sql 'SAS-library';

/* incorrect output */

proc sql outobs=12;
 title 'World Features with a Depth of Less than 500 Feet';
 select Name, Depth
 from sql.features
 where Depth lt 500
 order by Depth;

54 Chapter 2 • Retrieving Data from a Single Table

Output 2.30 Using a WHERE Clause with Missing Values (Incorrect Output)

However, because PROC SQL treats missing values as smaller than nonmissing values,
features that have no depth listed are also included in the results. To avoid this problem,
you could adjust the WHERE expression to check for missing values and exclude them
from the query results, as follows:

libname sql 'SAS-library';

/* corrected output */

proc sql outobs=12;
 title 'World Features with a Depth of Less than 500 Feet';
 select Name, Depth
 from sql.features
 where Depth lt 500 and Depth is not missing
 order by Depth;

Retrieving Rows That Satisfy a Condition 55

Output 2.31 Using a WHERE Clause with Missing Values (Corrected Output)

Summarizing Data

Overview of Summarizing Data
You can use an aggregate function (or summary function) to produce a statistical
summary of data in a table. The aggregate function instructs PROC SQL in how to
combine data in one or more columns. If you specify one column as the argument to an
aggregate function, then the values in that column are calculated. If you specify multiple
arguments, then the arguments or columns that are listed are calculated.

Note: When more than one argument is used within an SQL aggregate function, the
function is no longer considered to be an SQL aggregate or summary function. If
there is a like-named Base SAS function, then PROC SQL executes the Base SAS
function and the results that are returned are based on the values for the current row.
If no like-named Base SAS function exists, then an error will occur. For example, if
you use multiple arguments for the AVG function, an error will occur because there
is no AVG function for Base SAS.

When you use an aggregate function, PROC SQL applies the function to the entire table,
unless you use a GROUP BY clause. You can use aggregate functions in the SELECT or
HAVING clauses.

Note: See “Grouping Data” on page 64 for information about producing summaries of
individual groups of data within a table.

Using Aggregate Functions
The following table lists the aggregate functions that you can use:

Table 2.6 Aggregate Functions

Function Definition

AVG, MEAN mean or average of values

COUNT, FREQ, N number of nonmissing values

56 Chapter 2 • Retrieving Data from a Single Table

Function Definition

CSS corrected sum of squares

CV coefficient of variation (percent)

MAX largest value

MIN smallest value

NMISS number of missing values

PRT probability of a greater absolute value of
Student's t

RANGE range of values

STD standard deviation

STDERR standard error of the mean

SUM sum of values

SUMWGT sum of the WEIGHT variable values1

T Student's t value for testing the hypothesis
that the population mean is zero

USS uncorrected sum of squares

VAR variance

Note: You can use most other SAS functions in PROC SQL, but they are not treated as
aggregate functions.

Summarizing Data with a WHERE Clause

Overview of Summarizing Data with a WHERE Clause
You can use aggregate, or summary functions, by using a WHERE clause. For a
complete list of the aggregate functions that you can use, see Table 2.6 on page 56.

Using the MEAN Function with a WHERE Clause
This example uses the MEAN function to find the annual mean temperature for each
country in the SQL.WORLDTEMPS table. The WHERE clause returns countries with a
mean temperature that is greater than 75 degrees.

libname sql 'SAS-library';

proc sql outobs=12;
 title 'Mean Temperatures for World Cities';

1 In the SQL procedure, each row has a weight of 1.

Summarizing Data 57

 select City, Country, mean(AvgHigh, AvgLow)
 as MeanTemp
 from sql.worldtemps
 where calculated MeanTemp gt 75
 order by MeanTemp desc;

Note: You must use the CALCULATED keyword to reference the calculated column.

Output 2.32 Using the MEAN Function with a WHERE Clause

Displaying Sums
The following example uses the SUM function to return the total oil reserves for all
countries in the SQL.OILRSRVS table:

libname sql 'SAS-library';

proc sql;
 title 'World Oil Reserves';
 select sum(Barrels) format=comma18. as TotalBarrels
 from sql.oilrsrvs;

Note: The SUM function produces a single row of output for the requested sum because
no nonaggregate value appears in the SELECT clause.

58 Chapter 2 • Retrieving Data from a Single Table

Output 2.33 Displaying Sums

Combining Data from Multiple Rows into a Single Row
In the previous example, PROC SQL combined information from multiple rows of data
into a single row of output. Specifically, the world oil reserves for each country were
combined to form a total for all countries. Combining, or rolling up, of rows occurs
when the following conditions exist:

• The SELECT clause contains only columns that are specified within an aggregate
function.

• The WHERE clause, if there is one, contains only columns that are specified in the
SELECT clause.

Remerging Summary Statistics
The following example uses the MAX function to find the largest population in the
SQL.COUNTRIES table and displays it in a column called MaxPopulation. Aggregate
functions, such as the MAX function, can cause the same calculation to repeat for every
row. This occurs whenever PROC SQL remerges data. Remerging occurs whenever any
of the following conditions exist:

• The SELECT clause references a column that contains an aggregate function that is
not listed in a GROUP BY clause.

• The SELECT clause references a column that contains an aggregate function and
other column or columns that are not listed in the GROUP BY clause.

• One or more columns or column expressions that are listed in a HAVING clause are
not included in a subquery or a GROUP BY clause.

In this example, PROC SQL writes the population of China, which is the largest
population in the table:

libname sql 'SAS-library';

proc sql outobs=12;
 title 'Largest Country Populations';
 select Name, Population format=comma20.,
 max(Population) as MaxPopulation format=comma20.
 from sql.countries
 order by Population desc;

Summarizing Data 59

Output 2.34 Using Aggregate Functions

In some cases, you might need to use an aggregate function so that you can use its
results in another calculation. To do this, you need only to construct one query for PROC
SQL to automatically perform both calculations. This type of operation also causes
PROC SQL to remerge the data.

For example, if you want to find the percentage of the total world population that resides
in each country, then you construct a single query that performs the following tasks:

• obtains the total world population by using the SUM function

• divides each country's population by the total world population

PROC SQL runs an internal query to find the sum and then runs another internal query
to divide each country's population by the sum.

libname sql 'SAS-library';

proc sql outobs=12;
 title 'Percentage of World Population in Countries';
 select Name, Population format=comma14.,
 (Population / sum(Population) * 100) as Percentage
 format=comma8.2
 from sql.countries
 order by Percentage desc;

Note: When a query remerges data, PROC SQL displays a note in the log to indicate
that data remerging has occurred.

60 Chapter 2 • Retrieving Data from a Single Table

Output 2.35 Remerging Summary Statistics

Using Aggregate Functions with Unique Values

Counting Unique Values
You can use DISTINCT with an aggregate function to cause the function to use only
unique values from a column.

The following query returns the number of distinct, nonmissing continents in the
SQL.COUNTRIES table:

libname sql 'SAS-library';

proc sql;
 title 'Number of Continents in the COUNTRIES Table';
 select count(distinct Continent) as Count
 from sql.countries;

Output 2.36 Using DISTINCT with the COUNT Function

Summarizing Data 61

Note: You cannot use select count(distinct *) to count distinct rows in a
table. This code generates an error because PROC SQL does not know which
duplicate column values to eliminate.

Counting Nonmissing Values
Compare the previous example with the following query, which does not use the
DISTINCT keyword. This query counts every nonmissing occurrence of a continent in
the SQL.COUNTRIES table, including duplicate values:

libname sql 'SAS-library';

proc sql;
 title 'Countries for Which a Continent is Listed';
 select count(Continent) as Count
 from sql.countries;

Output 2.37 Effect of Not Using DISTINCT with the COUNT Function

Counting All Rows
In the previous two examples, countries that have a missing value in the Continent
column are ignored by the COUNT function. To obtain a count of all rows in the table,
including countries that are not on a continent, you can use the following code in the
SELECT clause:

proc sql;
 title 'Number of Countries in the SQL.COUNTRIES Table';
 select count(*) as Number
 from sql.countries;

Output 2.38 Using the COUNT Function to Count All Rows in a Table

Summarizing Data with Missing Values

Overview of Summarizing Data with Missing Values
When you use an aggregate function with data that contains missing values, the results
might not provide the information that you expect because many aggregate functions
ignore missing values.

62 Chapter 2 • Retrieving Data from a Single Table

Finding Errors Caused by Missing Values
The AVG function returns the average of only the nonmissing values. The following
query calculates the average length of three features in the SQL.FEATURES table:
Angel Falls and the Amazon and Nile rivers:

libname sql 'SAS-library';

/* unexpected output */

proc sql;
 title 'Average Length of Angel Falls, Amazon and Nile Rivers';
 select Name, Length, avg(Length) as AvgLength
 from sql.features
 where Name in ('Angel Falls', 'Amazon', 'Nile');

Output 2.39 Finding Errors Caused by Missing Values (Unexpected Output)

Because no length is stored for Angel Falls, the average includes only the values for the
Amazon and Nile rivers. Therefore, the average contains unexpected output results.

Compare the results from the previous example with the following query, which includes
a COALESCE expression to handle missing values:

/* modified output */

proc sql;
 title 'Average Length of Angel Falls, Amazon and Nile Rivers';
 select Name, Length, coalesce(Length, 0) as NewLength,
 avg(calculated NewLength) as AvgLength
 from sql.features
 where Name in ('Angel Falls', 'Amazon', 'Nile');

Output 2.40 Finding Errors Caused by Missing Values (Modified Output)

Summarizing Data 63

Grouping Data
The GROUP BY clause groups data by a specified column or columns. When you use a
GROUP BY clause, you also use an aggregate function in the SELECT clause or in a
HAVING clause to instruct PROC SQL in how to summarize the data for each group.
PROC SQL calculates the aggregate function separately for each group.

Grouping by One Column
The following example sums the populations of all countries to find the total population
of each continent:

libname sql 'SAS-library';

proc sql;
 title 'Total Populations of World Continents';
 select Continent, sum(Population) format=comma14. as TotalPopulation
 from sql.countries
 where Continent is not missing
 group by Continent;

Note: Countries for which a continent is not listed are excluded by the WHERE clause.

Output 2.41 Grouping by One Column

Grouping without Summarizing
When you use a GROUP BY clause without an aggregate function, PROC SQL treats
the GROUP BY clause as if it were an ORDER BY clause and displays a message in the
log that informs you that this has happened. The following example attempts to group
high and low temperature information for each city in the SQL.WORLDTEMPS table by
country:

64 Chapter 2 • Retrieving Data from a Single Table

libname sql 'SAS-library';

proc sql outobs=12;
 title 'High and Low Temperatures';
 select City, Country, AvgHigh, AvgLow
 from sql.worldtemps
 group by Country;

The output and log show that PROC SQL transforms the GROUP BY clause into an
ORDER BY clause.

Output 2.42 Grouping without Aggregate Functions

Log 2.2 Grouping without Aggregate Functions (Partial Log)

 WARNING: A GROUP BY clause has been transformed into an ORDER BY clause because

 neither the SELECT clause nor the optional HAVING clause of the
 associated table-expression referenced a summary function.

Grouping by Multiple Columns
To group by multiple columns, separate the column names with commas within the
GROUP BY clause. You can use aggregate functions with any of the columns that you
select. The following example groups by both Location and Type, producing total square
miles for the deserts and lakes in each location in the SQL.FEATURES table:

Grouping Data 65

libname sql 'SAS-library';

proc sql;
 title 'Total Square Miles of Deserts and Lakes';
 select Location, Type, sum(Area) as TotalArea format=comma16.
 from sql.features
 where type in ('Desert', 'Lake')
 group by Location, Type;

Output 2.43 Grouping by Multiple Columns

Grouping and Sorting Data
You can order grouped results with an ORDER BY clause. The following example takes
the previous example and adds an ORDER BY clause to change the order of the
Location column from ascending order to descending order:

libname sql 'SAS-library';

proc sql;
 title 'Total Square Miles of Deserts and Lakes';
 select Location, Type, sum(Area) as TotalArea format=comma16.
 from sql.features
 where type in ('Desert', 'Lake')
 group by Location, Type
 order by Location desc;

66 Chapter 2 • Retrieving Data from a Single Table

Output 2.44 Grouping with an ORDER BY Clause

Grouping with Missing Values

Finding Grouping Errors Caused by Missing Values
When a column contains missing values, PROC SQL treats the missing values as a
single group. This can sometimes provide unexpected results.

In this example, because the SQL.COUNTRIES table contains some missing values in
the Continent column, the missing values combine to form a single group that has the
total area of the countries that have a missing value in the Continent column:

libname sql 'SAS-library';

/* unexpected output */

proc sql outobs=12;
 title 'Areas of World Continents';
 select Name format=$25.,
 Continent,
 sum(Area) format=comma12. as TotalArea
 from sql.countries
 group by Continent
 order by Continent, Name;

The output is incorrect because Bermuda, Iceland, and Kalaallit Nunaat are not actually
part of the same continent. However, PROC SQL treats them that way because they all
have a missing character value in the Continent column.

Grouping Data 67

Output 2.45 Finding Grouping Errors Caused by Missing Values (Unexpected Output)

To correct the query from the previous example, you can write a WHERE clause to
exclude the missing values from the results:

/* modified output */

proc sql outobs=12;
 title 'Areas of World Continents';
 select Name format=$25.,
 Continent,
 sum(Area) format=comma12. as TotalArea
 from sql.countries
 where Continent is not missing
 group by Continent
 order by Continent, Name;

68 Chapter 2 • Retrieving Data from a Single Table

Output 2.46 Adjusting the Query to Avoid Errors Due to Missing Values (Modified Output)

Note: Aggregate functions, such as the SUM function, can cause the same calculation to
repeat for every row. This occurs whenever PROC SQL remerges data. See
“Remerging Summary Statistics” on page 59 for more information about remerging.

Filtering Grouped Data

Overview of Filtering Grouped Data
You can use a HAVING clause with a GROUP BY clause to filter grouped data. The
HAVING clause affects groups in a way that is similar to the way in which a WHERE
clause affects individual rows. When you use a HAVING clause, PROC SQL displays
only the groups that satisfy the HAVING expression.

Using a Simple HAVING Clause
The following example groups the features in the SQL.FEATURES table by type and
then displays only the numbers of islands, oceans, and seas:

libname sql 'SAS-library';

proc sql;
 title 'Numbers of Islands, Oceans, and Seas';
 select Type, count(*) as Number
 from sql.features
 group by Type

Filtering Grouped Data 69

 having Type in ('Island', 'Ocean', 'Sea')
 order by Type;

Output 2.47 Using a Simple HAVING Clause

Choosing between HAVING and WHERE
The differences between the HAVING clause and the WHERE clause are shown in the
following table. Because you use the HAVING clause when you work with groups of
data, queries that contain a HAVING clause usually also contain the following:

• a GROUP BY clause

• an aggregate function

Note: If you use a HAVING clause without a GROUP BY clause and if the query
references at least one aggregate function, PROC SQL treats the input data as if it all
comes from a single group of data.

Table 2.7 Differences between the HAVING Clause and WHERE Clause

HAVING clause attributes WHERE clause attributes

is typically used to specify conditions for
including or excluding groups of rows from a
table.

is used to specify conditions for including or
excluding individual rows from a table.

must follow the GROUP BY clause in a query,
if used with a GROUP BY clause.

must precede the GROUP BY clause in a
query, if used with a GROUP BY clause.

is affected by a GROUP BY clause, when there
is no GROUP BY clause, the HAVING clause
is treated like a WHERE clause.

is not affected by a GROUP BY clause.

is processed after the GROUP BY clause and
any aggregate functions.

is processed before a GROUP BY clause, if
there is one, and before any aggregate
functions.

Using HAVING with Aggregate Functions
The following query returns the populations of all continents that have more than 15
countries:

70 Chapter 2 • Retrieving Data from a Single Table

libname sql 'SAS-library';

proc sql;
 title 'Total Populations of Continents with More than 15 Countries';
 select Continent,
 sum(Population) as TotalPopulation format=comma16.,
 count(*) as Count
 from sql.countries
 group by Continent
 having count(*) gt 15
 order by Continent;

The HAVING expression contains the COUNT function, which counts the number of
rows within each group.

Output 2.48 Using HAVING with the COUNT Function

Validating a Query
The VALIDATE statement enables you to check the syntax of a query for correctness
without submitting it to PROC SQL. PROC SQL displays a message in the log to
indicate whether the syntax is correct.

libname sql 'SAS-library';

proc sql;
 validate
 select Name, Statehood
 from sql.unitedstates
 where Statehood lt '01Jan1800'd;

Log 2.3 Validating a Query (Partial Log)

3 proc sql;
4 validate
5 select Name, Statehood
6 from sql.unitedstates
7 where Statehood lt '01Jan1800'd;
NOTE: PROC SQL statement has valid syntax.

The following example shows an invalid query and the corresponding log message:

Validating a Query 71

libname sql 'SAS-library';

proc sql;
 validate
 select Name, Statehood
 from sql.unitedstates
 where lt '01Jan1800'd;

Log 2.4 Validating an Invalid Query (Partial Log)

3 proc sql;
4 validate
5 select Name, Statehood
6 from sql.unitedstates
7 where lt '01Jan1800'd;

 22
 76
ERROR 22-322: Syntax error, expecting one of the following: !, !!, &, *, **,

 +, -, /, <, <=, <>, =, >, >=, ?, AND, CONTAINS, EQ, GE,
GROUP,
 GT, HAVING, LE, LIKE, LT, NE, OR, ORDER, ^=, |, ||, ~=.

ERROR 76-322: Syntax error, statement will be ignored.

NOTE: The SAS System stopped processing this step because of errors.

72 Chapter 2 • Retrieving Data from a Single Table

Chapter 3

Retrieving Data from Multiple
Tables

Introduction . 73

Selecting Data from More than One Table by Using Joins 74
Overview of Selecting Data from More than One Table by Using Joins 74
Inner Joins . 75
Outer Joins . 84
Specialty Joins . 87
Using the Coalesce Function in Joins . 90
Comparing DATA Step Match-Merges with PROC SQL Joins 91

Using Subqueries to Select Data . 95
Single-Value Subqueries . 95
Multiple-Value Subqueries . 96
Correlated Subqueries . 97
Testing for the Existence of a Group of Values . 98
Multiple Levels of Subquery Nesting . 99
Combining a Join with a Subquery . 100

When to Use Joins and Subqueries . 101

Combining Queries with Set Operators . 102
Working with Two or More Query Results . 102
Producing Unique Rows from Both Queries (UNION) . 103
Producing Rows That Are in Only the First Query Result (EXCEPT) 104
Producing Rows That Belong to Both Query Results (INTERSECT) 105
Concatenating Query Results (OUTER UNION) . 106
Producing Rows from the First Query or the Second Query 107

Introduction

This chapter shows you how to perform the following tasks:

• select data from more than one table by joining the tables together

• use subqueries to select data from one table based on data values from another table

• combine the results of more than one query by using set operators

Note: Unless otherwise noted, the PROC SQL operations that are shown in this chapter
apply to views as well as tables. For more information about views, see Chapter 4,
“Creating and Updating Tables and Views,” on page 109.

73

Selecting Data from More than One Table by
Using Joins

Overview of Selecting Data from More than One Table by Using
Joins

The data that you need for a report could be located in more than one table. In order to
select the data from the tables, join the tables in a query. Joining tables enables you to
select data from multiple tables as if the data were contained in one table. Joins do not
alter the original tables.

The most basic type of join is simply two tables that are listed in the FROM clause of a
SELECT statement. The following query joins the two tables that are shown in Output
3.1 on page 74 and creates Output 3.2 on page 75.

proc sql;
 title 'Table One and Table Two';
 select *
 from one, two;

proc sql;
 title 'Table One';
 select * from one;

 title 'Table Two';
 select * from two;

quit;

Output 3.1 Table One, Table Two

74 Chapter 3 • Retrieving Data from Multiple Tables

Output 3.2 Cartesian Product of Table One and Table Two

Joining tables in this way returns the Cartesian product of the tables. Each row from the
first table is combined with every row from the second table. When you run this query,
the following message is written to the SAS log:

Log 3.1 Cartesian Product Log Message

NOTE: The execution of this query involves performing one or more Cartesian
 product joins that can not be optimized.

The Cartesian product of large tables can be huge. Typically, you want a subset of the
Cartesian product. You specify the subset by declaring the join type.

There are two types of joins:

• Inner Joins return a result table for all the rows in a table that have one or more
matching rows in the other table or tables that are listed in the FROM clause.

• Outer Joins are inner joins that are augmented with rows that did not match with any
row from the other table in the join. There are three types of outer joins: left, right,
and full.

Inner Joins

Overview of Inner Joins

An inner join returns only the subset of rows from the first table that matches rows from
the second table. You can specify the columns that you want to be compared for
matching values in a WHERE clause.

The following code adds a WHERE clause to the previous query. The WHERE clause
specifies that only rows whose values in column X of Table One match values in column

Selecting Data from More than One Table by Using Joins 75

X of Table Two should appear in the output. Compare this query's output to Output 3.2
on page 75.

proc sql;
 title 'Table One and Table Two';
 select * from one, two
 where one.x=two.x;

Output 3.3 Table One and Table Two Joined

The output contains only one row because only one value in column X matches from
each table. In an inner join, only the matching rows are selected. Outer joins can return
nonmatching rows; they are covered in “Outer Joins” on page 84.

Note that the column names in the WHERE clause are prefixed by their table names.
This is known as qualifying the column names, and it is necessary when you specify
columns that have the same name from more than one table. Qualifying the column
name avoids creating an ambiguous column reference.

Using Table Aliases
A table alias is a temporary, alternate name for a table. You specify table aliases in the
FROM clause. Table aliases are used in joins to qualify column names and can make a
query easier to read by abbreviating table names.

The following example compares the oil production of countries to their oil reserves by
joining the OILPROD and OILRSRVS tables on their Country columns. Because the
Country columns are common to both tables, they are qualified with their table aliases.
You could also qualify the columns by prefixing the column names with the table names.

Note: The AS keyword is optional.

libname sql 'SAS-library';

proc sql outobs=6;
 title 'Oil Production/Reserves of Countries';
 select * from sql.oilprod as p, sql.oilrsrvs as r
 where p.country = r.country;

76 Chapter 3 • Retrieving Data from Multiple Tables

Output 3.4 Abbreviating Column Names by Using Table Aliases

Note that each table's Country column is displayed. Typically, once you have determined
that a join is functioning correctly, you include just one of the matching columns in the
SELECT clause.

Specifying the Order of Join Output
You can order the output of joined tables by one or more columns from either table. The
next example's output is ordered in descending order by the BarrelsPerDay column. It is
not necessary to qualify BarrelsPerDay, because the column exists only in the OILPROD
table.

libname sql 'SAS-library';

proc sql outobs=6;
 title 'Oil Production/Reserves of Countries';
 select p.country, barrelsperday 'Production', barrels 'Reserves'
 from sql.oilprod p, sql.oilrsrvs r
 where p.country = r.country
 order by barrelsperday desc;

Output 3.5 Ordering the Output of Joined Tables

Selecting Data from More than One Table by Using Joins 77

Creating Inner Joins Using INNER JOIN Keywords
The INNER JOIN keywords can be used to join tables. The ON clause replaces the
WHERE clause for specifying columns to join. PROC SQL provides these keywords
primarily for compatibility with the other joins (OUTER, RIGHT, and LEFT JOIN).
Using INNER JOIN with an ON clause provides the same functionality as listing tables
in the FROM clause and specifying join columns with a WHERE clause.

This code produces the same output as the previous code but uses the INNER JOIN
construction.

proc sql ;
 select p.country, barrelsperday 'Production', barrels 'Reserves'
 from sql.oilprod p inner join sql.oilrsrvs r
 on p.country = r.country
 order by barrelsperday desc;

Joining Tables Using Comparison Operators
Tables can be joined by using comparison operators other than the equal sign (=) in the
WHERE clause. For more information about comparison operators, see “Retrieving
Rows Based on a Comparison” on page 45. In this example, all U.S. cities in the
USCITYCOORDS table are selected that are south of Cairo, Egypt. The compound
WHERE clause specifies the city of Cairo in the WORLDCITYCOORDS table and
joins USCITYCOORDS and WORLDCITYCOORDS on their Latitude columns, using
a less-than (lt) operator.

libname sql 'SAS-library';

proc sql;
 title 'US Cities South of Cairo, Egypt';
 select us.City, us.State, us.Latitude, world.city, world.latitude
 from sql.worldcitycoords world, sql.uscitycoords us
 where world.city = 'Cairo' and
 us.latitude lt world.latitude;

Output 3.6 Using Comparison Operators to Join Tables

When you run this query, the following message is written to the SAS log:

78 Chapter 3 • Retrieving Data from Multiple Tables

Log 3.2 Comparison Query Log Message

NOTE: The execution of this query involves performing one or more Cartesian
 product joins that can not be optimized.

Recall that you see this message when you run a query that joins tables without
specifying matching columns in a WHERE clause. PROC SQL also displays this
message whenever tables are joined by using an inequality operator.

The Effects of Null Values on Joins
Most database products treat nulls as distinct entities and do not match them in joins.
PROC SQL treats nulls as missing values and as matches for joins. Any null will match
with any other null of the same type (character or numeric) in a join.

The following example joins Table One and Table Two on column B. There are null
values in column B of both tables. Notice in the output that the null value in row c of
Table One matches all the null values in Table Two. This is probably not the intended
result for the join.

proc sql;
 title 'One and Two Joined';
 select one.a 'One', one.b, two.a 'Two', two.b
 from one, two
 where one.b=two.b;

Selecting Data from More than One Table by Using Joins 79

Output 3.7 Joining Tables That Contain Null Values

In order to specify only the nonmissing values for the join, use the IS NOT MISSING
operator:

proc sql;
 select one.a 'One', one.b, two.a 'Two', two.b
 from one, two
 where one.b=two.b and
 one.b is not missing;

80 Chapter 3 • Retrieving Data from Multiple Tables

Output 3.8 Results of Adding IS NOT MISSING to Joining Tables That Contain Null Values

Creating Multicolumn Joins
When a row is distinguished by a combination of values in more than one column, use
all the necessary columns in the join. For example, a city name could exist in more than
one country. To select the correct city, you must specify both the city and country
columns in the joining query's WHERE clause.

This example displays the latitude and longitude of capital cities by joining the
COUNTRIES table with the WORLDCITYCOORDS table. To minimize the number of
rows in the example output, the first part of the WHERE expression selects capitals with
names that begin with the letter L from the COUNTRIES table.

libname sql 'SAS-library';

proc sql;
 title 'Coordinates of Capital Cities';
 select Capital format=$12., Name format=$12.,
 City format=$12., Country format=$12.,
 Latitude, Longitude
 from sql.countries, sql.worldcitycoords
 where Capital like 'L%' and
 Capital = City;

London occurs once as a capital city in the COUNTRIES table. However, in
WORLDCITYCOORDS, London is found twice: as a city in England and again as a city
in Canada. Specifying only Capital = City in the WHERE expression yields the
following incorrect output:

Output 3.9 Selecting Capital City Coordinates (incorrect output)

Selecting Data from More than One Table by Using Joins 81

Notice in the output that the inner join incorrectly matches London, England, to both
London, Canada, and London, England. By also joining the country name columns
together (COUNTRIES.Name to WORLDCITYCOORDS.Country), the rows match
correctly.

libname sql 'SAS-library';

proc sql;
 title 'Coordinates of Capital Cities';
 select Capital format=$12., Name format=$12.,
 City format=$12., Country format=$12.,
 latitude, longitude
 from sql.countries, sql.worldcitycoords
 where Capital like 'L%' and
 Capital = City and
 Name = Country;

Output 3.10 Selecting Capital City Coordinates (correct output)

Selecting Data from More than Two Tables
The data that you need could be located in more than two tables. For example, if you
want to show the coordinates of the capitals of the states in the United States, then you
need to join the UNITEDSTATES table, which contains the state capitals, with the
USCITYCOORDS table, which contains the coordinates of cities in the United States.
Because cities must be joined along with their states for an accurate join (similarly to the
previous example), you must join the tables on both the city and state columns of the
tables.

Joining the cities, by joining the UNITEDSTATES.Capital column to the
USCITYCOORDS.City column, is straightforward. However, in the UNITEDSTATES
table the Name column contains the full state name, while in USCITYCOORDS the
states are specified by their postal code. It is therefore impossible to directly join the two
tables on their state columns. To solve this problem, it is necessary to use the
POSTALCODES table, which contains both the state names and their postal codes, as an
intermediate table to make the correct relationship between UNITEDSTATES and
USCITYCOORDS. The correct solution joins the UNITEDSTATES.Name column to
the POSTALCODES.Name column (matching the full state names), and the
POSTALCODES.Code column to the USCITYCOORDS.State column (matching the
state postal codes).

libname sql 'SAS-library';

title 'Coordinates of State Capitals';
proc sql outobs=10;

82 Chapter 3 • Retrieving Data from Multiple Tables

 select us.Capital format=$15., us.Name 'State' format=$15.,
 pc.Code, c.Latitude, c.Longitude
 from sql.unitedstates us, sql.postalcodes pc,
 sql.uscitycoords c
 where us.Capital = c.City and
 us.Name = pc.Name and
 pc.Code = c.State;

Output 3.11 Selecting Data from More than Two Tables

Showing Relationships within a Single Table Using Self-Joins
When you need to show comparative relationships between values in a table, it is
sometimes necessary to join columns within the same table. Joining a table to itself is
called a self-join, or reflexive join. You can think of a self-join as PROC SQL making an
internal copy of a table and joining the table to its copy.

For example, the following code uses a self-join to select cities that have average yearly
high temperatures equal to the average yearly low temperatures of other cities.

libname sql 'SAS-library';

 proc sql;
 title "Cities' High Temps = Cities' Low Temps";
 select High.City format $12., High.Country format $12.,
 High.AvgHigh, ' | ',
 Low.City format $12., Low.Country format $12.,
 Low.AvgLow
 from sql.worldtemps High, sql.worldtemps Low
 where High.AvgHigh = Low.AvgLow and
 High.city ne Low.city and
 High.country ne Low.country;

Notice that the WORLDTEMPS table is assigned two aliases, High and Low.
Conceptually, this makes a copy of the table so that a join can be made between the table

Selecting Data from More than One Table by Using Joins 83

and its copy. The WHERE clause selects those rows that have high temperature equal to
low temperature.

The WHERE clause also prevents a city from being joined to itself (City ne City
and Country ne Country), although, in this case, it is highly unlikely that the high
temperature would be equal to the low temperature for the same city.

Output 3.12 Joining a Table to Itself (Self-Join)

Outer Joins

Overview of Outer Joins
Outer joins are inner joins that are augmented with rows from one table that do not
match any row from the other table in the join. The resulting output includes rows that
match and rows that do not match from the join's source tables. Nonmatching rows have
null values in the columns from the unmatched table. Use the ON clause instead of the
WHERE clause to specify the column or columns on which you are joining the tables.
However, you can continue to use the WHERE clause to subset the query result.

Including Nonmatching Rows with the Left Outer Join

84 Chapter 3 • Retrieving Data from Multiple Tables

A left outer join lists matching rows and rows from the left-hand table (the first table
listed in the FROM clause) that do not match any row in the right-hand table. A left join
is specified with the keywords LEFT JOIN and ON.

For example, to list the coordinates of the capitals of international cities, join the
COUNTRIES table, which contains capitals, with the WORLDCITYCOORDS table,
which contains cities' coordinates, by using a left join. The left join lists all capitals,
regardless of whether the cities exist in WORLDCITYCOORDS. Using an inner join
would list only capital cities for which there is a matching city in
WORLDCITYCOORDS.

libname sql 'SAS-library';

proc sql outobs=10;
 title 'Coordinates of Capital Cities';
 select Capital format=$20., Name 'Country' format=$20.,
 Latitude, Longitude
 from sql.countries a left join sql.worldcitycoords b
 on a.Capital = b.City and
 a.Name = b.Country
 order by Capital;

Output 3.13 Left Join of COUNTRIES and WORLDCITYCOORDS

Including Nonmatching Rows with the Right Outer Join

A right join, specified with the keywords RIGHT JOIN and ON, is the opposite of a left
join: nonmatching rows from the right-hand table (the second table listed in the FROM
clause) are included with all matching rows in the output. This example reverses the join

Selecting Data from More than One Table by Using Joins 85

of the last example; it uses a right join to select all the cities from the
WORLDCITYCOORDS table and displays the population only if the city is the capital
of a country (that is, if the city exists in the COUNTRIES table).

libname sql 'SAS-library';

proc sql outobs=10;
 title 'Populations of Capitals Only';
 select City format=$20., Country 'Country' format=$20.,
 Population
 from sql.countries right join sql.worldcitycoords
 on Capital = City and
 Name = Country
 order by City;

Output 3.14 Right Join of COUNTRIES and WORLDCITYCOORDS

Selecting All Rows with the Full Outer Join

A full outer join, specified with the keywords FULL JOIN and ON, selects all matching
and nonmatching rows. This example displays the first ten matching and nonmatching
rows from the City and Capital columns of WORLDCITYCOORDS and COUNTRIES.
Note that the pound sign (#) is used as a line split character in the labels.

libname sql 'SAS-library';

proc sql outobs=10;
 title 'Populations and/or Coordinates of World Cities';
 select City '#City#(WORLDCITYCOORDS)' format=$20.,

86 Chapter 3 • Retrieving Data from Multiple Tables

 Capital '#Capital#(COUNTRIES)' format=$20.,
 Population, Latitude, Longitude
 from sql.countries full join sql.worldcitycoords
 on Capital = City and
 Name = Country;

Output 3.15 Full Outer Join of COUNTRIES and WORLDCITYCOORDS

Specialty Joins

Overview of Specialty Joins
Three types of joins—cross joins, union joins, and natural joins—are special cases of the
standard join types.

Including All Combinations of Rows with the Cross Join
A cross join is a Cartesian product; it returns the product of two tables. Like a Cartesian
product, a cross join's output can be limited by a WHERE clause.

This example shows a cross join of the tables One and Two:

data one;
 input X Y $;
 datalines;
1 2
2 3
;

data two;
 input W Z $;

Selecting Data from More than One Table by Using Joins 87

 datalines;
2 5
3 6
4 9
;
run;

proc sql;
 title 'Table One';
 select * from one;

 title 'Table Two';
 select * from two;

title;
quit;

Output 3.16 Tables One and Two

proc sql;
 title 'Table One and Table Two';
 select *
 from one cross join two;

Output 3.17 Cross Join

88 Chapter 3 • Retrieving Data from Multiple Tables

Like a conventional Cartesian product, a cross join causes a note regarding Cartesian
products in the SAS log.

Including All Rows with the Union Join
A union join combines two tables without attempting to match rows. All columns and
rows from both tables are included. Combining tables with a union join is similar to
combining them with the OUTER UNION set operator (see “Combining Queries with
Set Operators” on page 102). A union join's output can be limited by a WHERE clause.

This example shows a union join of the same One and Two tables that were used earlier
to demonstrate a cross join:

proc sql;
 select *
 from one union join two;

Output 3.18 Union Join

Matching Rows with a Natural Join
A natural join automatically selects columns from each table to use in determining
matching rows. With a natural join, PROC SQL identifies columns in each table that
have the same name and type; rows in which the values of these columns are equal are
returned as matching rows. The ON clause is implied.

This example produces the same results as the example in “Specifying the Order of Join
Output” on page 77:

libname sql 'SAS-library';

proc sql outobs=6;
 title 'Oil Production/Reserves of Countries';
 select country, barrelsperday 'Production', barrels 'Reserve'
 from sql.oilprod natural join sql.oilrsrvs
 order by barrelsperday desc;

Selecting Data from More than One Table by Using Joins 89

Output 3.19 Natural Inner Join of OILPROD and OILRSRVS

The advantage of using a natural join is that the coding is streamlined. The ON clause is
implied, and you do not need to use table aliases to qualify column names that are
common to both tables. These two queries return the same results:

proc sql;
 select a.W, a.X, Y, Z
 from table1 a left join table2 b
 on a.W=b.W and a.X=b.X
 order by a.W;

proc sql;
 select W, X, Y, Z
 from table1 natural left join table2
 order by W;

If you specify a natural join on tables that do not have at least one column with a
common name and type, then the result is a Cartesian product. You can use a WHERE
clause to limit the output.

Because the natural join makes certain assumptions about what you want to accomplish,
you should know your data thoroughly before using it. You could get unexpected or
incorrect results. For example, if you are expecting two tables to have only one column
in common when they actually have two. You can use the FEEDBACK option to see
exactly how PROC SQL is implementing your query. See “Using PROC SQL Options to
Create and Debug Queries” on page 136 for more information about the FEEDBACK
option.

A natural join assumes that you want to base the join on equal values of all pairs of
common columns. To base the join on inequalities or other comparison operators, use
standard inner or outer join syntax.

Using the Coalesce Function in Joins
As you can see from the previous examples, the nonmatching rows in outer joins contain
missing values. By using the COALESCE function, you can overlay columns so that
only the row from the table that contains data is listed. Recall that COALESCE takes a
list of columns as its arguments and returns the first nonmissing value that it encounters.

This example adds the COALESCE function to the previous example to overlay the
COUNTRIES.Capital, WORLDCITYCOORDS.City, and COUNTRIES.Name columns.

90 Chapter 3 • Retrieving Data from Multiple Tables

COUNTRIES.Name is supplied as an argument to COALESCE because some islands do
not have capitals.

libname sql 'SAS-library';

proc sql outobs=10;
 title 'Populations and/or Coordinates of World Cities';
 select coalesce(Capital, City,Name)format=$20. 'City',
 coalesce(Name, Country) format=$20. 'Country',
 Population, Latitude, Longitude
 from sql.countries full join sql.worldcitycoords
 on Capital = City and
 Name = Country;

Output 3.20 Using COALESCE in Full Outer Join of COUNTRIES and
WORLDCITYCOORDS

COALESCE can be used in both inner and outer joins. For more information about
COALESCE, see “Replacing Missing Values” on page 35.

Comparing DATA Step Match-Merges with PROC SQL Joins

Overview of Comparing DATA Step Match-Merges with PROC SQL
Joins
Many SAS users are familiar with using a DATA step to merge data sets. This section
compares merges to joins. DATA step match-merges and PROC SQL joins can produce
the same results. However, a significant difference between a match-merge and a join is
that you do not have to sort the tables before you join them.

When All of the Values Match
When all of the values match in the BY variable and there are no duplicate BY variables,
you can use an inner join to produce the same result as a match-merge. To demonstrate

Selecting Data from More than One Table by Using Joins 91

this result, here are two tables that have the column Flight in common. The values of
Flight are the same in both tables:

FLTSUPER FLTDEST

Flight Supervisor Flight Destination

 145 Kang 145 Brussels
 150 Miller 150 Paris
 155 Evanko 155 Honolulu

FLTSUPER and FLTDEST are already sorted by the matching column Flight. A DATA
step merge produces Output 3.21 on page 92.

data fltsuper;
input Flight Supervisor $;
datalines;
145 Kang
150 Miller
155 Evanko
;
data fltdest;
input Flight Destination $;
datalines;
145 Brussels
150 Paris
155 Honolulu
;
run;

data merged;
 merge FltSuper FltDest;
 by Flight;
run;

proc print data=merged noobs;
 title 'Table MERGED';
run;

Output 3.21 Merged Tables When All the Values Match

With PROC SQL, presorting the data is not necessary. The following PROC SQL join
gives the same result as that shown in Output 3.21 on page 92.

proc sql;
 title 'Table MERGED';
 select s.flight, Supervisor, Destination

92 Chapter 3 • Retrieving Data from Multiple Tables

 from fltsuper s, fltdest d
 where s.Flight=d.Flight;

When Only Some of the Values Match
When only some of the values match in the BY variable, you can use an outer join to
produce the same result as a match-merge. To demonstrate this result, here are two
tables that have the column Flight in common. The values of Flight are not the same in
both tables:

FLTSUPER FLTDEST

Flight Supervisor Flight Destination

 145 Kang 145 Brussels
 150 Miller 150 Paris
 155 Evanko 165 Seattle
 157 Lei

A DATA step merge produces Output 3.22 on page 93:

data merged;
 merge fltsuper fltdest;
 by flight;
run;
proc print data=merged noobs;
 title 'Table MERGED';
run;

Output 3.22 Merged Tables When Some of the Values Match

To get the same result with PROC SQL, use an outer join so that the query result will
contain the nonmatching rows from the two tables. In addition, use the COALESCE
function to overlay the Flight columns from both tables. The following PROC SQL join
gives the same result as that shown in Output 3.22 on page 93:

proc sql;
 select coalesce(s.Flight,d.Flight) as Flight, Supervisor, Destination
 from fltsuper s full join fltdest d
 on s.Flight=d.Flight;

Selecting Data from More than One Table by Using Joins 93

When the Position of the Values Is Important
When you want to merge two tables and the position of the values is important, you
might need to use a DATA step merge. To demonstrate this idea, here are two tables to
consider:

FLTSUPER FLTDEST

Flight Supervisor Flight Destination

 145 Kang 145 Brussels
 145 Ramirez 145 Edmonton
 150 Miller 150 Paris
 150 Picard 150 Madrid
 155 Evanko 165 Seattle
 157 Lei

For Flight 145, Kang matches with Brussels and Ramirez matches with Edmonton.
Because the DATA step merges data based on the position of values in BY groups, the
values of Supervisor and Destination match appropriately. A DATA step merge
produces Output 3.23 on page 94:

data merged;
 merge fltsuper fltdest;
 by flight;
run;
proc print data=merged noobs;
 title 'Table MERGED';
run;

Output 3.23 Match-Merge of the FLTSUPER and FLTDEST Tables

PROC SQL does not process joins according to the position of values in BY groups.
Instead, PROC SQL processes data only according to the data values. Here is the result
of an inner join for FLTSUPER and FLTDEST:

proc sql;
 title 'Table JOINED';
 select *

94 Chapter 3 • Retrieving Data from Multiple Tables

 from fltsuper s, fltdest d
 where s.Flight=d.Flight;

Output 3.24 PROC SQL Join of the FLTSUPER and FLTDEST Tables

PROC SQL builds the Cartesian product and then lists the rows that meet the WHERE
clause condition. The WHERE clause returns two rows for each supervisor, one row for
each destination. Because Flight has duplicate values and there is no other matching
column, there is no way to associate Kang only with Brussels, Ramirez only with
Edmonton, and so on.

For more information about DATA step match-merges, see SAS Statements: Reference.

Using Subqueries to Select Data
While a table join combines multiple tables into a new table, a subquery (enclosed in
parentheses) selects rows from one table based on values in another table. A subquery,
or inner query, is a query expression that is nested as part of another query expression.
Depending on the clause that contains it, a subquery can return a single value or multiple
values. Subqueries are most often used in the WHERE and the HAVING expressions.

Single-Value Subqueries
A single-value subquery returns a single row and column. It can be used in a WHERE or
HAVING clause with a comparison operator. The subquery must return only one value,
or else the query fails and an error message is printed to the log.

This query uses a subquery in its WHERE clause to select U.S. states that have a
population greater than Belgium. The subquery is evaluated first, and then it returns the
population of Belgium to the outer query.

libname sql 'SAS-library';

proc sql;
 title 'U.S. States with Population Greater than Belgium';

Using Subqueries to Select Data 95

 select Name 'State' , population format=comma10.
 from sql.unitedstates
 where population gt
 (select population from sql.countries
 where name = "Belgium");

Internally, this is what the query looks like after the subquery has executed:

proc sql;
 title 'U.S. States with Population Greater than Belgium';
 select Name 'State', population format=comma10.
 from sql.unitedstates
 where population gt 10162614;

The outer query lists the states whose populations are greater than the population of
Belgium.

Output 3.25 Single-Value Subquery

Multiple-Value Subqueries
A multiple-value subquery can return more than one value from one column. It is used in
a WHERE or HAVING expression that contains IN or a comparison operator that is
modified by ANY or ALL. This example displays the populations of oil-producing
countries. The subquery first returns all countries that are found in the OILPROD table.
The outer query then matches countries in the COUNTRIES table to the results of the
subquery.

libname sql 'SAS-library';

proc sql outobs=5;
 title 'Populations of Major Oil Producing Countries';
 select name 'Country', Population format=comma15.
 from sql.countries
 where Name in
 (select Country from sql.oilprod);

96 Chapter 3 • Retrieving Data from Multiple Tables

Output 3.26 Multiple-Value Subquery Using IN

If you use the NOT IN operator in this query, then the query result will contain all the
countries that are not contained in the OILPROD table.

libname sql 'SAS-library';

proc sql outobs=5;
 title 'Populations of NonMajor Oil Producing Countries';
 select name 'Country', Population format=comma15.
 from sql.countries
 where Name not in
 (select Country from sql.oilprod);

Output 3.27 Multiple-Value Subquery Using NOT IN

Correlated Subqueries
The previous subqueries have been simple subqueries that are self-contained and that
execute independently of the outer query. A correlated subquery requires a value or
values to be passed to it by the outer query. After the subquery runs, it passes the results
back to the outer query. Correlated subqueries can return single or multiple values.

This example selects all major oil reserves of countries on the continent of Africa.

libname sql 'SAS-library';

proc sql;

Using Subqueries to Select Data 97

 title 'Oil Reserves of Countries in Africa';
 select * from sql.oilrsrvs o
 where 'Africa' =
 (select Continent from sql.countries c
 where c.Name = o.Country);

The outer query selects the first row from the OILRSRVS table and then passes the
value of the Country column, Algeria, to the subquery. At this point, the subquery
internally looks like this:

(select Continent from sql.countries c
 where c.Name = 'Algeria');

The subquery selects that country from the COUNTRIES table. The subquery then
passes the country's continent back to the WHERE clause in the outer query. If the
continent is Africa, then the country is selected and displayed. The outer query then
selects each subsequent row from the OILRSRVS table and passes the individual values
of Country to the subquery. The subquery returns the appropriate values of Continent to
the outer query for comparison in its WHERE clause.

Note that the WHERE clause uses an = (equal) operator. You can use an = (equal)
operator if the subquery returns only a single value. However, if the subquery returns
multiple values, then you must use IN or a comparison operator with ANY or ALL. For
detailed information about the operators that are available for use with subqueries, see
Chapter 7, “SQL Procedure,” on page 209.

Output 3.28 Correlated Subquery

Testing for the Existence of a Group of Values
The EXISTS condition tests for the existence of a set of values. An EXISTS condition is
true if any rows are produced by the subquery, and it is false if no rows are produced.
Conversely, the NOT EXISTS condition is true when a subquery produces an empty
table.

This example produces the same result as Output 3.28 on page 98. EXISTS checks for
the existence of countries that have oil reserves on the continent of Africa. Note that the
WHERE clause in the subquery now contains the condition Continent = 'Africa'
that was in the outer query in the previous example.

libname sql 'SAS-library';

proc sql;

98 Chapter 3 • Retrieving Data from Multiple Tables

 title 'Oil Reserves of Countries in Africa';
 select * from sql.oilrsrvs o
 where exists
 (select Continent from sql.countries c
 where o.Country = c.Name and
 Continent = 'Africa');

Output 3.29 Testing for the Existence of a Group of Values

Multiple Levels of Subquery Nesting
Subqueries can be nested so that the innermost subquery returns a value or values to be
used by the next outer query. Then, that subquery's value or values are used by the next
outer query, and so on. Evaluation always begins with the innermost subquery and works
outward.

This example lists cities in Africa that are in countries with major oil reserves.

1. The innermost query is evaluated first. It returns countries that are located on the
continent of Africa.

2. The outer subquery is evaluated. It returns a subset of African countries that have
major oil reserves by comparing the list of countries that was returned by the inner
subquery against the countries in OILRSRVS.

3. Finally, the WHERE clause in the outer query lists the coordinates of the cities that
exist in the WORLDCITYCOORDS table whose countries match the results of the
outer subquery.

libname sql 'SAS-library';

proc sql;
 title 'Coordinates of African Cities with Major Oil Reserves';
 select * from sql.worldcitycoords
3 where country in
 2 (select Country from sql.oilrsrvs o
 where o.Country in
 1 (select Name from sql.countries c
 where c.Continent='Africa'));

Using Subqueries to Select Data 99

Output 3.30 Multiple Levels of Subquery Nesting

Combining a Join with a Subquery
You can combine joins and subqueries in a single query. Suppose that you want to find
the city nearest to each city in the USCITYCOORDS table. The query must first select a
city A, compute the distance from a city A to every other city, and finally select the city
with the minimum distance from city A. This can be done by joining the
USCITYCOORDS table to itself (self-join) and then determining the closest distance
between cities by using another self-join in a subquery.

This is the formula to determine the distance between coordinates:

SQRT(((Latitude2−Latitude1)**2) + ((Longitude2−Longitude1)**2))

Although the results of this formula are not exactly accurate because of the distortions
caused by the curvature of the earth, they are accurate enough for this example to
determine whether one city is closer than another.

libname sql 'SAS-library';

proc sql outobs=10;
 title 'Neighboring Cities';
 select a.City format=$10., a.State,
 a.Latitude 'Lat', a.Longitude 'Long',
 b.City format=$10., b.State,
 b.Latitude 'Lat', b.Longitude 'Long',
 sqrt(((b.latitude-a.latitude)**2) +
 ((b.longitude-a.longitude)**2)) as dist format=6.1
 from sql.uscitycoords a, sql.uscitycoords b
 where a.city ne b.city and
 calculated dist =
 (select min(sqrt(((d.latitude-c.latitude)**2) +
 ((d.longitude-c.longitude)**2)))
 from sql.uscitycoords c, sql.uscitycoords d
 where c.city = a.city and
 c.state = a.state and
 d.city ne c.city)
 order by a.city;

100 Chapter 3 • Retrieving Data from Multiple Tables

Output 3.31 Combining a Join with a Subquery

The outer query joins the table to itself and determines the distance between the first city
A1 in table A and city B2 (the first city that is not equal to city A1) in Table B. PROC
SQL then runs the subquery. The subquery does another self-join and calculates the
minimum distance between city A1 and all other cities in the table other than city A1.
The outer query tests to see whether the distance between cities A1 and B2 is equal to
the minimum distance that was calculated by the subquery. If they are equal, then a row
that contains cities A1 and B2 with their coordinates and distance is written.

When to Use Joins and Subqueries
Use a join or a subquery any time that you reference information from multiple tables.
Joins and subqueries are often used together in the same query. In many cases, you can
solve a data retrieval problem by using a join, a subquery, or both. Here are some
guidelines for using joins and queries.

• If your report needs data that is from more than one table, then you must perform a
join. Whenever multiple tables (or views) are listed in the FROM clause, those tables
become joined.

• If you need to combine related information from different rows within a table, then
you can join the table with itself.

• Use subqueries when the result that you want requires more than one query and each
subquery provides a subset of the table involved in the query.

• If a membership question is asked, then a subquery is usually used. If the query
requires a NOT EXISTS condition, then you must use a subquery because NOT
EXISTS operates only in a subquery; the same principle holds true for the EXISTS
condition.

When to Use Joins and Subqueries 101

• Many queries can be formulated as joins or subqueries. Although the PROC SQL
query optimizer changes some subqueries to joins, a join is generally more efficient
to process.

Combining Queries with Set Operators

Working with Two or More Query Results
PROC SQL can combine the results of two or more queries in various ways by using the
following set operators:

UNION
produces all unique rows from both queries.

EXCEPT
produces rows that are part of the first query only.

INTERSECT
produces rows that are common to both query results.

OUTER UNION
concatenates the query results.

The operator is used between the two queries, for example:

select columns from table
set-operator
select columns from table;

Place a semicolon after the last SELECT statement only. Set operators combine columns
from two queries based on their position in the referenced tables without regard to the
individual column names. Columns in the same relative position in the two queries must
have the same data types. The column names of the tables in the first query become the
column names of the output table. For information about using set operators with more
than two query results, see the Chapter 7, “SQL Procedure,” on page 209. The following
optional keywords give you more control over set operations:

ALL
does not suppress duplicate rows. When the keyword ALL is specified, PROC SQL
does not make a second pass through the data to eliminate duplicate rows. Thus,
using ALL is more efficient than not using it. ALL is not allowed with the OUTER
UNION operator.

CORRESPONDING (CORR)
overlays columns that have the same name in both tables. When used with EXCEPT,
INTERSECT, and UNION, CORR suppresses columns that are not in both tables.

Each set operator is described and used in an example based on the following two tables.

102 Chapter 3 • Retrieving Data from Multiple Tables

Output 3.32 Tables Used in Set Operation Examples

Whereas join operations combine tables horizontally, set operations combine tables
vertically. Therefore, the set diagrams that are included in each section are displayed
vertically.

Producing Unique Rows from Both Queries (UNION)

The UNION operator combines two query results. It produces all the unique rows that
result from both queries. That is, it returns a row if it occurs in the first table, the second,
or both. UNION does not return duplicate rows. If a row occurs more than once, then
only one occurrence is returned.

proc sql;
 title 'A UNION B';
 select * from sql.a
 union
 select * from sql.b;

Output 3.33 Producing Unique Rows from Both Queries (UNION)

Combining Queries with Set Operators 103

You can use the ALL keyword to request that duplicate rows remain in the output.

proc sql;
 title 'A UNION ALL B';
 select * from sql.a
 union all
 select * from sql.b;

Output 3.34 Producing Rows from Both Queries (UNION ALL)

Producing Rows That Are in Only the First Query Result (EXCEPT)

The EXCEPT operator returns rows that result from the first query but not from the
second query. In this example, the row that contains the values 3 and three exists in
the first query (table A) only and is returned by EXCEPT.

proc sql;
 title 'A EXCEPT B';
 select * from sql.a
 except
 select * from sql.b;

104 Chapter 3 • Retrieving Data from Multiple Tables

Output 3.35 Producing Rows That Are in Only the First Query Result (EXCEPT)

Note that the duplicated row in Table A containing the values 2 and two does not appear
in the output. EXCEPT does not return duplicate rows that are unmatched by rows in the
second query. Adding ALL keeps any duplicate rows that do not occur in the second
query.

proc sql;
 title 'A EXCEPT ALL B';
 select * from sql.a
 except all
 select * from sql.b;

Output 3.36 Producing Rows That Are in Only the First Query Result (EXCEPT ALL)

Producing Rows That Belong to Both Query Results (INTERSECT)

The INTERSECT operator returns rows from the first query that also occur in the
second.

proc sql;
 title 'A INTERSECT B';
 select * from sql.a
 intersect
 select * from sql.b;

Combining Queries with Set Operators 105

Output 3.37 Producing Rows That Belong to Both Query Results (INTERSECT)

The output of an INTERSECT ALL operation contains the rows produced by the first
query that are matched one-to-one with a row produced by the second query. In this
example, the output of INTERSECT ALL is the same as INTERSECT.

Concatenating Query Results (OUTER UNION)

The OUTER UNION operator concatenates the results of the queries. This example
concatenates tables A and B.

proc sql;
 title 'A OUTER UNION B';
 select * from sql.a
 outer union
 select * from sql.b;

Output 3.38 Concatenating the Query Results (OUTER UNION)

106 Chapter 3 • Retrieving Data from Multiple Tables

Notice that OUTER UNION does not overlay columns from the two tables. To overlay
columns in the same position, use the CORRESPONDING keyword.

proc sql;
 title 'A OUTER UNION CORR B';
 select * from sql.a
 outer union corr
 select * from sql.b;

Output 3.39 Concatenating the Query Results (OUTER UNION CORR)

Producing Rows from the First Query or the Second Query

There is no keyword in PROC SQL that returns unique rows from the first and second
table, but not rows that occur in both. Here is one way that you can simulate this
operation:

(query1 except query2)
union
(query2 except query1)

This example shows how to use this operation.

proc sql;
 title 'A EXCLUSIVE UNION B';
 (select * from sql.a
 except
 select * from sql.b)
 union
 (select * from sql.b

Combining Queries with Set Operators 107

 except
 select * from sql.a);

Output 3.40 Producing Rows from the First Query or the Second Query

The first EXCEPT returns one unique row from the first table (table A) only. The second
EXCEPT returns one unique row from the second table (table B) only. The middle
UNION combines the two results. Thus, this query returns the row from the first table
that is not in the second table, as well as the row from the second table that is not in the
first table.

108 Chapter 3 • Retrieving Data from Multiple Tables

Chapter 4

Creating and Updating Tables and
Views

Introduction . 110

Creating Tables . 110
Creating Tables from Column Definitions . 110
Creating Tables from a Query Result . 111
Creating Tables like an Existing Table . 113
Copying an Existing Table . 113
Using Data Set Options . 113

Inserting Rows into Tables . 114
Inserting Rows with the SET Clause . 114
Inserting Rows with the VALUES Clause . 115
Inserting Rows with a Query . 116

Updating Data Values in a Table . 118
Updating All Rows in a Column with the Same Expression 118
Updating Rows in a Column with Different Expressions 119
Handling Update Errors . 120

Deleting Rows . 120

Altering Columns . 121
Adding a Column . 121
Modifying a Column . 123
Deleting a Column . 124

Creating an Index . 124
Using PROC SQL to Create Indexes . 125
Tips for Creating Indexes . 125
Deleting Indexes . 125

Deleting a Table . 126

Using SQL Procedure Tables in SAS Software . 126

Creating and Using Integrity Constraints in a Table . 126

Creating and Using PROC SQL Views . 129
Overview of Creating and Using PROC SQL Views . 129
Creating Views . 129
Describing a View . 130
Updating a View . 130
Embedding a LIBNAME in a View . 131
Deleting a View . 132
Specifying In-Line Views . 132
Tips for Using SQL Procedure Views . 133

109

Using SQL Procedure Views in SAS Software . 134

Introduction

This chapter shows you how to perform the following tasks:

• create a table

• update tables

• alter existing tables

• delete a table

• create indexes

• use integrity constraints in table creation

• create views

Creating Tables
The CREATE TABLE statement enables you to create tables without rows from column
definitions or to create tables from a query result. You can also use CREATE TABLE to
copy an existing table.

Creating Tables from Column Definitions
You can create a new table without rows by using the CREATE TABLE statement to
define the columns and their attributes. You can specify a column's name, type, length,
informat, format, and label.

The following CREATE TABLE statement creates the NEWSTATES table:

proc sql;
 create table sql.newstates
 (state char(2), /* 2–character column for */
 /* state abbreviation */

 date num /* column for date of entry into the US */
 informat=date9. /* with an informat */
 format=date9., /* and format of DATE9. */

 population num); /* column for population */

The table NEWSTATES has three columns and 0 rows. The char(2) modifier is used to
change the length for State.

Use the DESCRIBE TABLE statement to verify that the table exists and to see the
column attributes. The following DESCRIBE TABLE statement writes a CREATE
TABLE statement to the SAS log:

proc sql;
 describe table sql.newstates;

110 Chapter 4 • Creating and Updating Tables and Views

Log 4.1 Table Created from Column Definitions

1 proc sql;
2 describe table sql.newstates;
NOTE: SQL table SQL.NEWSTATES was created like:

create table SQL.NEWSTATES(bufsize=8192)
 (
 state char(2),
 date num format=DATE9. informat=DATE9.,
 population num
);

DESCRIBE TABLE writes a CREATE TABLE statement to the SAS log even if you
did not create the table with the CREATE TABLE statement. You can also use the
CONTENTS statement in the DATASETS procedure to get a description of
NEWSTATES.

Creating Tables from a Query Result
To create a PROC SQL table from a query result, use a CREATE TABLE statement, and
place it before the SELECT statement. When a table is created this way, its data is
derived from the table or view that is referenced in the query's FROM clause. The new
table's column names are as specified in the query's SELECT clause list. The column
attributes (the type, length, informat, and format) are the same as those of the selected
source columns.

The following CREATE TABLE statement creates the DENSITIES table from the
COUNTRIES table. The newly created table is not displayed in SAS output unless you
query the table. Note the use of the OUTOBS option, which limits the size of the
DENSITIES table to 10 rows.

libname sql 'SAS-library';

proc sql outobs=10;
 title 'Densities of Countries';
 create table sql.densities as
 select Name 'Country' format $15.,
 Population format=comma10.0,
 Area as SquareMiles,
 Population/Area format=6.2 as Density
 from sql.countries;

 select * from sql.densities;

Creating Tables 111

Output 4.1 Table Created from a Query Result

The following DESCRIBE TABLE statement writes a CREATE TABLE statement to
the SAS log:

proc sql;
 describe table sql.densities;

Log 4.2 SAS Log for DESCRIBE TABLE Statement for DENSITIES

NOTE: SQL table SQL.DENSITIES was created like:

create table SQL.DENSITIES(bufsize=8192)
 (
 Name char(35) format=$15. informat=$35. label='Country',
 Population num format=COMMA10. informat=BEST8. label='Population',
 SquareMiles num format=BEST8. informat=BEST8. label='SquareMiles',
 Density num format=6.2
);

In this form of the CREATE TABLE statement, assigning an alias to a column renames
the column, but assigning a label does not. In this example, the Area column has been
renamed to SquareMiles, and the calculated column has been named Densities.
However, the Name column retains its name, and its display label is Country.

112 Chapter 4 • Creating and Updating Tables and Views

Creating Tables like an Existing Table
To create an empty table that has the same columns and attributes as an existing table or
view, use the LIKE clause in the CREATE TABLE statement. In the following example,
the CREATE TABLE statement creates the NEWCOUNTRIES table with six columns
and 0 rows and with the same column attributes as those in COUNTRIES. The
DESCRIBE TABLE statement writes a CREATE TABLE statement to the SAS log:

proc sql;
 create table sql.newcountries
 like sql.countries;

 describe table sql.newcountries;

Log 4.3 SAS Log for DESCRIBE TABLE Statement for NEWCOUNTRIES

NOTE: SQL table SQL.NEWCOUNTRIES was created like:

create table SQL.NEWCOUNTRIES(bufsize=16384)
 (
 Name char(35) format=$35. informat=$35.,
 Capital char(35) format=$35. informat=$35. label='Capital',
 Population num format=BEST8. informat=BEST8. label='Population',
 Area num format=BEST8. informat=BEST8.,
 Continent char(35) format=$35. informat=$35. label='Continent',
 UNDate num format=YEAR4.
);

Copying an Existing Table
A quick way to copy a table using PROC SQL is to use the CREATE TABLE statement
with a query that returns an entire table. This example creates COUNTRIES1, which
contains a copy of all the columns and rows that are in COUNTRIES:

create table countries1 as
 select * from sql.countries;

Using Data Set Options
You can use SAS data set options in the CREATE TABLE statement. The following
CREATE TABLE statement creates COUNTRIES2 from COUNTRIES. The DROP=
option deletes the UNDate column, and UNDate does not become part of
COUNTRIES2:

create table countries2 as
 select * from sql.countries(drop=UNDate);

Creating Tables 113

Inserting Rows into Tables
Use the INSERT statement to insert data values into tables. The INSERT statement first
adds a new row to an existing table, and then inserts the values that you specify into the
row. You specify values by using a SET clause or VALUES clause. You can also insert
the rows resulting from a query. Under most conditions, you can insert data into tables
through PROC SQL and SAS/ACCESS views. For more information, see “Updating a
View” on page 130.

Inserting Rows with the SET Clause
With the SET clause, you assign values to columns by name. The columns can appear in
any order in the SET clause. The following INSERT statement uses multiple SET
clauses to add two rows to NEWCOUNTRIES:

libname sql 'SAS-library';

proc sql;
create table sql.newcountries
 like sql.countries;

proc sql;
title "World's Largest Countries";
 insert into sql.newcountries
 select * from sql.countries
 where population ge 130000000;

proc sql;
 insert into sql.newcountries
 set name='Bangladesh',
 capital='Dhaka',
 population=126391060
 set name='Japan',
 capital='Tokyo',
 population=126352003;

 title "World's Largest Countries";
 select name format=$20.,
 capital format=$15.,
 population format=comma15.0
 from sql.newcountries;

114 Chapter 4 • Creating and Updating Tables and Views

Output 4.2 Rows Inserted with the SET Clause

Note the following features of SET clauses:

• As with other SQL clauses, use commas to separate columns. In addition, you must
use a semicolon after the last SET clause only.

• If you omit data for a column, then the value in that column is a missing value.

• To specify that a value is missing, use a blank in single quotation marks for character
values and a period for numeric values.

Inserting Rows with the VALUES Clause
With the VALUES clause, you assign values to a column by position. The following
INSERT statement uses multiple VALUES clauses to add rows to NEWCOUNTRIES.
Recall that NEWCOUNTRIES has six columns, so it is necessary to specify a value or
an appropriate missing value for all six columns. See the results of the DESCRIBE
TABLE statement in “Creating Tables like an Existing Table” on page 113 for
information about the columns of NEWCOUNTRIES.

libname sql 'SAS-library';

proc sql;
 insert into sql.newcountries
 values ('Pakistan', 'Islamabad', 123060000, ., ' ', .)
 values ('Nigeria', 'Lagos', 99062000, ., ' ', .);
 title "World's Largest Countries";
 select name format=$20.,
 capital format=$15.,
 population format=comma15.0
 from sql.newcountries;

Inserting Rows into Tables 115

Output 4.3 Rows Inserted with the Values Clause

Note the following features of VALUES clauses:

• As with other SQL clauses, use commas to separate columns. In addition, you must
use a semicolon after the last VALUES clause only.

• If you omit data for a column without indicating a missing value, then you receive an
error message and the row is not inserted.

• To specify that a value is missing, use a space in single quotation marks for character
values and a period for numeric values.

Inserting Rows with a Query
You can insert the rows from a query result into a table. The following query returns
rows for large countries (more than 130 million in population) from the COUNTRIES
table. The INSERT statement adds the data to the empty table NEWCOUNTRIES,
which was created earlier in “Creating Tables like an Existing Table” on page 113:

libname sql 'SAS-library';

proc sql;
 create table sql.newcountries
 like sql.countries;

proc sql;
 title "World's Largest Countries";
 insert into sql.newcountries
 select * from sql.countries
 where population ge 130000000;

 select name format=$20.,
 capital format=$15.,

116 Chapter 4 • Creating and Updating Tables and Views

 population format=comma15.0
 from sql.newcountries;

Output 4.4 Rows Inserted with a Query

If your query does not return data for every column, then you receive an error message,
and the row is not inserted. For more information about how PROC SQL handles errors
during data insertions, see “Handling Update Errors” on page 120.

Inserting Rows into Tables 117

Updating Data Values in a Table
You can use the UPDATE statement to modify data values in tables and in the tables
that underlie PROC SQL and SAS/ACCESS views. For more information about
updating views, see “Updating a View” on page 130. The UPDATE statement updates
data in existing columns; it does not create new columns. To add new columns, see
“Altering Columns” on page 121 and “Creating New Columns” on page 27. The
examples in this section update the original NEWCOUNTRIES table.

Updating All Rows in a Column with the Same Expression
The following UPDATE statement increases all populations in the NEWCOUNTRIES
table by 5%:

/* code for all examples in updating section */
libname sql 'SAS-library';

proc sql;
 delete from sql.newcountries;
 insert into sql.newcountries
 select * from sql.countries
 where population ge 130000000;

proc sql;
 update sql.newcountries
 set population=population*1.05;
 title "Updated Population Values";
 select name format=$20.,
 capital format=$15.,
 population format=comma15.0
 from sql.newcountries;

Output 4.5 Updating a Column for All Rows

118 Chapter 4 • Creating and Updating Tables and Views

Updating Rows in a Column with Different Expressions
If you want to update some, but not all, of a column's values, then use a WHERE
expression in the UPDATE statement. You can use multiple UPDATE statements, each
with a different expression. However, each UPDATE statement can have only one
WHERE clause. The following UPDATE statements result in different population
increases for different countries in the NEWCOUNRTRIES table.

libname sql 'SAS-library';

proc sql;
 delete from sql.newcountries;
 insert into sql.newcountries
 select * from sql.countries
 where population ge 130000000;

proc sql;
 update sql.newcountries
 set population=population*1.05
 where name like 'B%';

 update sql.newcountries
 set population=population*1.07
 where name in ('China', 'Russia');

 title "Selectively Updated Population Values";
 select name format=$20.,
 capital format=$15.,
 population format=comma15.0
 from sql.newcountries;

Output 4.6 Selectively Updating a Column

You can accomplish the same result with a CASE expression:

update sql.newcountries
 set population=population*
 case when name like 'B%' then 1.05
 when name in ('China', 'Russia') then 1.07

Updating Data Values in a Table 119

 else 1
 end;

If the WHEN clause is true, then the corresponding THEN clause returns a value that the
SET clause then uses to complete its expression. In this example, when Name starts with
the letter B, the SET expression becomes population=population*1.05.

CAUTION:
Make sure that you specify the ELSE clause. If you omit the ELSE clause, then
each row that is not described in one of the WHEN clauses receives a missing value
for the column that you are updating. This happens because the CASE expression
supplies a missing value to the SET clause, and the Population column is multiplied
by a missing value, which produces a missing value.

Handling Update Errors
While you are updating or inserting rows in a table, you might receive an error message
that the update or insert cannot be performed. By using the UNDO_POLICY= option,
you can control whether the changes that have already been made will be permanent.

The UNDO _POLICY= option in the PROC SQL and RESET statements determines
how PROC SQL handles the rows that have been inserted or updated by the current
INSERT or UPDATE statement up to the point of error.

UNDO_POLICY=REQUIRED
is the default. It undoes all updates or inserts up to the point of error.

UNDO_POLICY=NONE
does not undo any updates or inserts.

UNDO_POLICY=OPTIONAL
undoes any updates or inserts that it can undo reliably.

Note: Alternatively, you can set the SQLUNDOPOLICY system option. For more
information, see “SQLUNDOPOLICY= System Option” on page 370.

Deleting Rows
The DELETE statement deletes one or more rows in a table or in a table that underlies a
PROC SQL or SAS/ACCESS view. For more information about deleting rows from
views, see “Updating a View” on page 130. The following DELETE statement deletes
the names of countries that begin with the letter R:

proc sql;
 delete from sql.newcountries;

 insert into sql.newcountries
 select * from sql.countries
 where population ge 130000000;

proc sql;
 delete
 from sql.newcountries
 where name like 'R%';

A note in the SAS log tells you how many rows were deleted.

120 Chapter 4 • Creating and Updating Tables and Views

Log 4.4 SAS Log for DELETE Statement

NOTE: 1 row was deleted from SQL.NEWCOUNTRIES.

Note: For PROC SQL tables, SAS deletes the data in the rows but retains the space in
the table.

CAUTION:
If you omit a WHERE clause, then the DELETE statement deletes all the rows
from the specified table or the table that is described by a view. The rows are
not deleted from the table until it is re-created.

Altering Columns
The ALTER TABLE statement adds, modifies, and deletes columns in existing tables.
You can use the ALTER TABLE statement with tables only; it does not work with
views. A note appears in the SAS log that describes how you have modified the table.

Adding a Column
The ADD clause adds a new column to an existing table. You must specify the column
name and data type. You can also specify a length (LENGTH=), format (FORMAT=),
informat (INFORMAT=), and a label (LABEL=). The following ALTER TABLE
statement adds the numeric data column Density to the NEWCOUNTRIES table:

proc sql;
 delete from sql.newcountries;
 insert into sql.newcountries
 select * from sql.countries
 where population ge 130000000;

proc sql;
 alter table sql.newcountries
 add density num label='Population Density' format=6.2;

 title "Population Density Table";
 select name format=$20.,
 capital format=$15.,
 population format=comma15.0,
 density
 from sql.newcountries;

Altering Columns 121

Output 4.7 Adding a New Column

The new column is added to NEWCOUNTRIES, but it has no data values. The
following UPDATE statement changes the missing values for Density from missing to
the appropriate population densities for each country:

proc sql;
 update sql.newcountries
 set density=population/area;

 title "Population Density Table";
 select name format=$20.,
 capital format=$15.,
 population format=comma15.0,
 density
 from sql.newcountries;

Output 4.8 Filling in the New Column's Values

For more information about how to change data values, see “Updating Data Values in a
Table” on page 118.

122 Chapter 4 • Creating and Updating Tables and Views

You can accomplish the same update by using an arithmetic expression to create the
Population Density column as you re-create the table:

proc sql;
 create table sql.newcountries as
 select *, population/area as density
 label='Population Density'
 format=6.2
 from sql.newcountries;

See “Calculating Values” on page 29 for another example of creating columns with
arithmetic expressions.

Modifying a Column
You can use the MODIFY clause to change the width, informat, format, and label of a
column. To change a column's name, use the RENAME= data set option. You cannot
change a column's data type by using the MODIFY clause.

The following MODIFY clause permanently changes the format for the Population
column:

proc sql;
 delete from sql.newcountries;
 create table sql.newcountries as
 select * from sql.countries
 where population ge 130000000;

proc sql;
 title "World's Largest Countries";
 alter table sql.newcountries
 modify population format=comma15.;
 select name, population from sql.newcountries;

Output 4.9 Modifying a Column Format

Altering Columns 123

You might have to change a column's width (and format) before you can update the
column. For example, before you can prefix a long text string to Name, you must change
the width and format of Name from 35 to 60. The following statements modify and
update the Name column:

proc sql;
 title "World's Largest Countries";
 alter table sql.newcountries
 modify name char(60) format=$60.;
 update sql.newcountries
 set name='The United Nations member country is '||name;

 select name from sql.newcountries;

Output 4.10 Changing a Column's Width

Deleting a Column
The DROP clause deletes columns from tables. The following DROP clause deletes
UNDate from NEWCOUNTRIES:

proc sql;
 alter table sql.newcountries
 drop undate;

Creating an Index
An index is a file that is associated with a table. The index enables access to rows by
index value. Indexes can provide quick access to small subsets of data, and they can
enhance table joins. You can create indexes, but you cannot instruct PROC SQL to use
an index. PROC SQL determines whether it is efficient to use the index. Some columns
might not be appropriate for an index. In general, create indexes for columns that have
many unique values or are columns that you use regularly in joins.

124 Chapter 4 • Creating and Updating Tables and Views

Using PROC SQL to Create Indexes
You can create a simple index, which applies to one column only. The name of a simple
index must be the same as the name of the column that it indexes. Specify the column
name in parentheses after the table name. The following CREATE INDEX statement
creates an index for the Area column in NEWCOUNTRIES:

proc sql;
 create index area
 on sql.newcountries(area);

You can also create a composite index, which applies to two or more columns. The
following CREATE INDEX statement creates the index Places for the Name and
Continent columns in NEWCOUNTRIES:

proc sql;
 create index places
 on sql.newcountries(name, continent);

To ensure that each value of the indexed column (or each combination of values of the
columns in a composite index) is unique, use the UNIQUE keyword:

proc sql;
 create unique index places
 on sql.newcountries(name, continent);

Using the UNIQUE keyword causes SAS to reject any change to a table that would
cause more than one row to have the same index value.

Tips for Creating Indexes
• The name of the composite index cannot be the same as the name of one of the

columns in the table.

• If you use two columns to access data regularly, such as a first name column and a
last name column from an employee database, then you should create a composite
index for the columns.

• Keep the number of indexes to a minimum to reduce disk space and update costs.

• Use indexes for queries that retrieve a relatively small number of rows (less than
15%).

• In general, indexing a small table does not result in a performance gain.

• In general, indexing on a column with a small number (less than 6 or 7) of distinct
values does not result in a performance gain.

• You can use the same column in a simple index and in a composite index. However,
for tables that have a primary key integrity constraint, do not create more than one
index that is based on the same column as the primary key.

Deleting Indexes
To delete an index from a table, use the DROP INDEX statement. The following DROP
INDEX statement deletes the index Places from NEWCOUNTRIES:

proc sql;
 drop index places from sql.newcountries;

Creating an Index 125

Deleting a Table
To delete a PROC SQL table, use the DROP TABLE statement:

proc sql;
 drop table sql.newcountries;

Using SQL Procedure Tables in SAS Software
Because PROC SQL tables are SAS data files, you can use them as input to a DATA
step or to other SAS procedures. For example, the following PROC MEANS step
calculates the mean for Area for all countries in COUNTRIES:

proc means data=sql.countries mean maxdec=2;
 title "Mean Area for All Countries";
 var area;
run;

Output 4.11 Using a PROC SQL Table in PROC MEANS

Creating and Using Integrity Constraints in a
Table

Integrity constraints are rules that you specify to guarantee the accuracy, completeness,
or consistency of data in tables. All integrity constraints are enforced when you insert,
delete, or alter data values in the columns of a table for which integrity constraints have
been defined. Before a constraint is added to a table that contains existing data, all the
data is checked to determine that it satisfies the constraints.

You can use general integrity constraints to verify that data in a column is one of the
following:

• nonmissing

• unique

126 Chapter 4 • Creating and Updating Tables and Views

• both nonmissing and unique

• within a specified set or range of values

You can also apply referential integrity constraints to link the values in a specified
column (called a primary key) of one table to values of a specified column in another
table. When linked to a primary key, a column in the second table is called a foreign
key.

When you define referential constraints, you can also choose what action occurs when a
value in the primary key is updated or deleted.

• You can prevent the primary key value from being updated or deleted when
matching values exist in the foreign key. This is the default.

• You can allow updates and deletions to the primary key values. By default, any
affected foreign key values are changed to missing values. However, you can specify
the CASCADE option to update foreign key values instead. Currently, the
CASCADE option does not apply to deletions.

You can choose separate actions for updates and for deletions.

Note: Integrity constraints cannot be defined for views.

The following example creates integrity constraints for a table, MYSTATES, and
another table, USPOSTAL. The constraints are as follows:

• state name must be unique and nonmissing in both tables

• population must be greater than 0

• continent must be either North America or Oceania

proc sql;
 create table sql.mystates
 (state char(15),
 population num,
 continent char(15),

 /* contraint specifications */
 constraint prim_key primary key(state),
 constraint population check(population gt 0),
 constraint continent check(continent in ('North America', 'Oceania')));

 create table sql.uspostal
 (name char(15),
 code char(2) not null, /* constraint specified as */
 /* a column attribute */

 constraint for_key foreign key(name) /* links NAME to the */
 references sql.mystates /* primary key in MYSTATES */

 on delete restrict /* forbids deletions to STATE */
 /* unless there is no */
 /* matching NAME value */

 on update set null); /* allows updates to STATE, */
 /* changes matching NAME */
 /* values to missing */

Creating and Using Integrity Constraints in a Table 127

The DESCRIBE TABLE statement displays the integrity constraints in the SAS log as
part of the table description. The DESCRIBE TABLE CONSTRAINTS statement writes
only the constraint specifications to the SAS log.

proc sql;
 describe table sql.mystates;
 describe table constraints sql.uspostal;

Log 4.5 SAS Log Showing Integrity Constraints

NOTE: SQL table SQL.MYSTATES was created like:

create table SQL.MYSTATES(bufsize=8192)
 (
 state char(15),
 population num,
 continent char(15)
);
create unique index state on SQL.MYSTATES(state);

 -----Alphabetic List of Integrity Constraints-----

 Integrity Where On On
Constraint Type Variables Clause Reference Delete Update

-49 continent Check continent in

 ('North
 America',
 'Oceania')
-48 population Check population>0

-47 prim_key Primary Key state

 for_key Referential name SQL. Restrict Set Null
 USPOSTAL
NOTE: SQL table SQL.USPOSTAL (bufsize=8192) has the following integrity
 constraints:

 -----Alphabetic List of Integrity Constraints-----

 Integrity On On
 # Constraint Type Variables Reference Delete Update

 1 _NM0001_ Not Null code
 2 for_key Foreign Key name SQL.MYSTATES Restrict Set
Null

Integrity constraints cannot be used in views. For more information about integrity
constraints, see SAS Language Reference: Concepts.

128 Chapter 4 • Creating and Updating Tables and Views

Creating and Using PROC SQL Views

Overview of Creating and Using PROC SQL Views
A PROC SQL view contains a stored query that is executed when you use the view in a
SAS procedure or DATA step. Views are useful for the following reasons:

• often save space, because a view is frequently quite small compared with the data
that it accesses

• prevent users from continually submitting queries to omit unwanted columns or row

• shield sensitive or confidential columns from users while enabling the same users to
view other columns in the same table

• ensure that input data sets are always current, because data is derived from tables at
execution time

• hide complex joins or queries from users

Creating Views
To create a PROC SQL view, use the CREATE VIEW statement, as shown in the
following example:

libname sql 'SAS-library';

proc sql;
 title 'Current Population Information for Continents';
 create view sql.newcontinents as
 select continent,
 sum(population) as totpop format=comma15. label='Total Population',
 sum(area) as totarea format=comma15. label='Total Area'
 from sql.countries
 group by continent;

 select * from sql.newcontinents;

Creating and Using PROC SQL Views 129

Output 4.12 An SQL Procedure View

Note: In this example, each column has a name. If you are planning to use a view in a
procedure that requires variable names, then you must supply column aliases that
you can reference as variable names in other procedures. For more information, see
“Using SQL Procedure Views in SAS Software” on page 134.

Describing a View
The DESCRIBE VIEW statement writes a description of the PROC SQL view to the
SAS log. The following SAS log describes the view NEWCONTINENTS, which is
created in “Creating Views” on page 129:

proc sql;
 describe view sql.newcontinents;

Log 4.6 SAS Log from DESCRIBE VIEW Statement

NOTE: SQL view SQL.NEWCONTINENTS is defined as:

 select continent, SUM(population) as totpop label='Total Population'
format=COMMA15.0, SUM(area) as totarea label='Total Area' format=COMMA15.0
 from SQL.COUNTRIES
 group by continent;

To define a password-protected SAS view, you must specify a password. If the SAS
view was created with more than one password, you must specify its most restrictive
password if you want to access a definition of the view.For more information, see
“DESCRIBE Statement” on page 237.

Updating a View
You can update data through a PROC SQL and SAS/ACCESS view with the INSERT,
DELETE, and UPDATE statements, under the following conditions.

130 Chapter 4 • Creating and Updating Tables and Views

• You can update only a single table through a view. The underlying table cannot be
joined to another table or linked to another table with a set operator. The view cannot
contain a subquery.

• If the view accesses a DBMS table, then you must have been granted the appropriate
authorization by the external database management system (for example, ORACLE).
You must have installed the SAS/ACCESS software for your DBMS. See the
SAS/ACCESS documentation for your DBMS for more information about
SAS/ACCESS views.

• You can update a column in a view by using the column's alias, but you cannot
update a derived column, that is, a column that is produced by an expression. In the
following example, you can update SquareMiles, but not Density:

proc sql;
 create view mycountries as
 select Name,
 area as SquareMiles,
 population/area as Density
 from sql.countries;

• You can update a view that contains a WHERE clause. The WHERE clause can be
in the UPDATE clause or in the view. You cannot update a view that contains any
other clause, such as ORDER BY, HAVING, and so on.

Embedding a LIBNAME in a View
You can embed a SAS LIBNAME statement or a SAS/ACCESS LIBNAME statement
in a view by using the USING LIBNAME clause. When PROC SQL executes the view,
the stored query assigns the libref. For SAS/ACCESS librefs, PROC SQL establishes a
connection to a DBMS. The scope of the libref is local to the view and does not conflict
with any identically named librefs in the SAS session. When the query finishes, the
libref is disassociated. The connection to the DBMS is terminated and all data in the
library becomes unavailable.

The advantage of embedded librefs is that you can store engine-host options and DBMS
connection information, such as passwords, in the view. That, in turn, means that you do
not have to remember and reenter that information when you want to use the libref.

Note: The USING LIBNAME clause must be the last clause in the SELECT statement.
Multiple clauses can be specified, separated by commas.

In the following example, the libref OILINFO is assigned and a connection is made to an
ORACLE database:

proc sql;
 create view sql.view1 as
 select *
 from oilinfo.reserves as newreserves
 using libname oilinfo oracle
 user=username
 pass=password
 path='dbms-path';

For more information about the SAS/ACCESS LIBNAME statement, see the
SAS/ACCESS documentation for your DBMS.

The following example embeds a SAS LIBNAME statement in a view:

Creating and Using PROC SQL Views 131

proc sql;
 create view sql.view2 as
 select *
 from oil.reserves
 using libname oil 'SAS-data-library';

Deleting a View
To delete a view, use the DROP VIEW statement:

proc sql;
 drop view sql.newcontinents;

Specifying In-Line Views
In some cases, you might want to use a query in a FROM clause instead of a table or
view. You could create a view and refer to it in your FROM clause, but that process
involves two steps. To save the extra step, specify the view in-line, enclosed in
parentheses, in the FROM clause.

An in-line view is a query that appears in the FROM clause. An in-line view produces a
table internally that the outer query uses to select data. Unlike views that are created
with the CREATE VIEW statement, in-line views are not assigned names and cannot be
referenced in other queries or SAS procedures as if they were tables. An in-line view can
be referenced only in the query in which it is defined.

In the following query, the populations of all Caribbean and Central American countries
are summed in an in-line query. The WHERE clause compares the sum with the
populations of individual countries. Only countries that have a population greater than
the sum of Caribbean and Central American populations are displayed.

libname sql 'SAS-library';

proc sql;
 title 'Countries With Population GT Caribbean Countries';
 select w.Name, w.Population format=comma15., c.TotCarib
 from (select sum(population) as TotCarib format=comma15.
 from sql.countries
 where continent = 'Central America and Caribbean') as c,
 sql.countries as w
 where w.population gt c.TotCarib;

132 Chapter 4 • Creating and Updating Tables and Views

Output 4.13 Using an In-Line View

Tips for Using SQL Procedure Views
• Avoid using an ORDER BY clause in a view. If you specify an ORDER BY clause,

then the data must be sorted each time that the view is referenced.

• If data is used many times in one program or in multiple programs, then it is more
efficient to create a table rather than a view. If a view is referenced often in one
program, then the data must be accessed at each reference.

• If the view resides in the same SAS library as the contributing table or tables, then
specify a one-level name in the FROM clause. The default for the libref for the
FROM clause's table or tables is the libref of the library that contains the view. This
prevents you from having to change the view if you assign a different libref to the
SAS library that contains the view and its contributing table or tables. This tip is
used in the view that is described in “Creating Views” on page 129.

• Avoid creating views that are based on tables whose structure might change. A view
is no longer valid when it references a nonexistent column.

• When you process PROC SQL views between a client and a server, getting the
correct results depends on the compatibility between the client and server
architecture. For more information, see “Accessing a SAS View” in Chapter 17 of
SAS/CONNECT User's Guide.

Creating and Using PROC SQL Views 133

Using SQL Procedure Views in SAS Software
You can use PROC SQL views as input to a DATA step or to other SAS procedures.
The syntax for using a PROC SQL view in SAS is the same as that for a PROC SQL
table. For an example, see “Using SQL Procedure Tables in SAS Software” on page 126.

134 Chapter 4 • Creating and Updating Tables and Views

Chapter 5

Programming with the SQL
Procedure

Introduction . 136

Using PROC SQL Options to Create and Debug Queries 136
Overview of Using PROC SQL Options to Create and Debug Queries 136
Restricting Row Processing with the INOBS= and OUTOBS= Options 136
Limiting Iterations with the LOOPS= Option . 137
Checking Syntax with the NOEXEC Option and the VALIDATE Statement 137
Expanding SELECT * with the FEEDBACK Option . 138
Timing PROC SQL with the STIMER Option . 138
Resetting PROC SQL Options with the RESET Statement 139

Improving Query Performance . 140
Overview of Improving Query Performance . 140
Using Indexes to Improve Performance . 140
Using the Keyword ALL in Set Operations . 141
Omitting the ORDER BY Clause When Creating Tables and Views 141
Using In-Line Views versus Temporary Tables . 141
Comparing Subqueries with Joins . 141
Using WHERE Expressions with Joins . 141
Optimizing the PUT Function . 142
Replacing References to the DATE, TIME, DATETIME, and

TODAY Functions . 144
Disabling the Remerging of Data When Using Summary Functions 144

Accessing SAS System Information by Using DICTIONARY Tables 144
What Are Dictionary Tables? . 144
Retrieving Information about DICTIONARY Tables and SASHELP Views 146
Using DICTIONARY.TABLES . 148
Using DICTIONARY.COLUMNS . 149
DICTIONARY Tables and Performance . 150

Using SAS Data Set Options with PROC SQL . 151

Using PROC SQL with the SAS Macro Facility . 152
Overview of Using PROC SQL with the SAS Macro Facility 152
Creating Macro Variables in PROC SQL . 152
Concatenating Values in Macro Variables . 155
Defining Macros to Create Tables . 156
Using the PROC SQL Automatic Macro Variables . 157

Formatting PROC SQL Output by Using the REPORT Procedure 160

Accessing a DBMS with SAS/ACCESS Software . 162
Overview of Accessing a DBMS with SAS/ACCESS Software 162
Connecting to a DBMS by Using the LIBNAME Statement 163

135

Connecting to a DBMS by Using the SQL Procedure Pass-Through Facility 166
Updating PROC SQL and SAS/ACCESS Views . 168

Using the Output Delivery System with PROC SQL . 169

Introduction

This section shows you how to do the following:

• use PROC SQL options to create and debug queries

• improve query performance

• access dictionary tables and how they are useful in gathering information about the
elements of SAS

• use PROC SQL with the SAS macro facility

• use PROC SQL with the REPORT procedure

• access DBMSs by using SAS/ACCESS software

• format PROC SQL output by using the SAS Output Delivery System (ODS)

Using PROC SQL Options to Create and Debug
Queries

Overview of Using PROC SQL Options to Create and Debug Queries
PROC SQL supports options that can give you greater control over PROC SQL while
you are developing a query:

• The INOBS=, OUTOBS=, and LOOPS= options reduce query execution time by
limiting the number of rows and the number of iterations that PROC SQL processes.

• The EXEC and VALIDATE statements enable you to quickly check the syntax of a
query.

• The FEEDBACK option expands a SELECT * statement into a list of columns that
the statement represents.

• The PROC SQL STIMER option records and displays query execution time.

You can set an option initially in the PROC SQL statement, and then use the RESET
statement to change the same option's setting without ending the current PROC SQL
step.

Restricting Row Processing with the INOBS= and OUTOBS=
Options

When you are developing queries against large tables, you can reduce the time that it
takes for the queries to run by reducing the number of rows that PROC SQL processes.
Subsetting the tables with WHERE statements is one way to do this. Using the INOBS=
and the OUTOBS= options are other ways.

136 Chapter 5 • Programming with the SQL Procedure

The INOBS= option restricts the number of rows that PROC SQL takes as input from
any single source. For example, if you specify INOBS=10, then PROC SQL uses only
10 rows from any table or view that is specified in a FROM clause. If you specify
INOBS=10 and join two tables without using a WHERE clause, then the resulting table
(Cartesian product) contains a maximum of 100 rows. The INOBS= option is similar to
the SAS system option OBS=.

The OUTOBS= option restricts the number of rows that PROC SQL displays or writes
to a table. For example, if you specify OUTOBS=10 and insert values into a table by
using a query, then PROC SQL inserts a maximum of 10 rows into the resulting table.
OUTOBS= is similar to the SAS data set option OBS=.

In a simple query, there might be no apparent difference between using INOBS or
OUTOBS. However, at other times it is important to choose the correct option. For
example, taking the average of a column with INOBS=10 returns an average of only 10
values from that column.

Limiting Iterations with the LOOPS= Option
The LOOPS= option restricts PROC SQL to the number of iterations that are specified
in this option through its inner loop. By setting a limit, you can prevent queries from
consuming excessive computer resources. For example, joining three large tables
without meeting the join-matching conditions could create a huge internal table that
would be inefficient to process. Use the LOOPS= option to prevent this from happening.

You can use the number of iterations that are reported in the SQLOOPS macro variable
(after each PROC SQL statement is executed) to gauge an appropriate value for the
LOOPS= option. For more information, see “Using the PROC SQL Automatic Macro
Variables” on page 157.

If you use the PROMPT option with the INOBS=, OUTOBS=, or LOOPS= options, you
are prompted to stop or continue processing when the limits set by these options are
reached.

Checking Syntax with the NOEXEC Option and the VALIDATE
Statement

To check the syntax of a PROC SQL step without actually executing it, use the
NOEXEC option or the VALIDATE statement. The NOEXEC option can be used once
in the PROC SQL statement, and the syntax of all queries in that PROC SQL step will
be checked for accuracy without executing them. The VALIDATE statement must be
specified before each SELECT statement in order for that statement to be checked for
accuracy without executing. If the syntax is valid, then a message is written to the SAS
log to that effect. If the syntax is invalid, then an error message is displayed. The
automatic macro variable SQLRC contains an error code that indicates the validity of the
syntax. For an example of the VALIDATE statement used in PROC SQL, see
“Validating a Query” on page 71. For an example of using the VALIDATE statement in
a SAS/AF application, see “Using the PROC SQL Automatic Macro Variables” on page
157.

Note: There is an interaction between the PROC SQL EXEC and ERRORSTOP options
when SAS is running in a batch or noninteractive session. For more information, see
Chapter 7, “SQL Procedure,” on page 209.

Using PROC SQL Options to Create and Debug Queries 137

Expanding SELECT * with the FEEDBACK Option
The FEEDBACK option expands a SELECT * (ALL) statement into the list of columns
that the statement represents. Any PROC SQL view is expanded into the underlying
query, all expressions are enclosed in parentheses to indicate their order of evaluation,
and the PUT function optimizations that are performed on the query are displayed. The
FEEDBACK option also displays the resolved values of macros and macro variables.

For example, the following query is expanded in the SAS log:

libname sql 'SAS-library';

proc sql feedback;
 select * from sql.countries;

Log 5.1 Expanded SELECT * Statement

NOTE: Statement transforms to:

 select COUNTRIES.Name, COUNTRIES.Capital, COUNTRIES.Population,
COUNTRIES.Area, COUNTRIES.Continent, COUNTRIES.UNDate
 from SQL.COUNTRIES;

Timing PROC SQL with the STIMER Option
Certain operations can be accomplished in more than one way. For example, there is
often a join equivalent to a subquery. Consider factors such as readability and
maintenance, but generally you will choose the query that runs fastest. The SAS system
option STIMER shows you the cumulative time for an entire procedure. The PROC SQL
STIMER option shows you how fast the individual statements in a PROC SQL step are
running. This enables you to optimize your query.

Note: For the PROC SQL STIMER option to work, the SAS system option STIMER
must also be specified.

This example compares the execution times of two queries. Both queries list the names
and populations of states in the UNITEDSTATES table that have a larger population
than Belgium. The first query does this with a join; the second with a subquery. Log 5.2
on page 139 shows the STIMER results from the SAS log.

libname sql 'SAS-library';

proc sql stimer ;
 select us.name, us.population
 from sql.unitedstates as us, sql.countries as w
 where us.population gt w.population and
 w.name = 'Belgium';

 select Name, population
 from sql.unitedstates
 where population gt
 (select population from sql.countries
 where name = 'Belgium');

138 Chapter 5 • Programming with the SQL Procedure

Log 5.2 Comparing Run Times of Two Queries

4 proc sql stimer ;
NOTE: SQL Statement used:
 real time 0.00 seconds
 cpu time 0.01 seconds

5 select us.name, us.population
6 from sql.unitedstates as us, sql.countries as w
7 where us.population gt w.population and
8 w.name = 'Belgium';
NOTE: The execution of this query involves performing one or more Cartesian
 product joins that can not be optimized.
NOTE: SQL Statement used:
 real time 0.10 seconds
 cpu time 0.05 seconds

9
10 select Name, population
11 from sql.unitedstates
12 where population gt
13 (select population from sql.countries
14 where name = 'Belgium');
NOTE: SQL Statement used:
 real time 0.09 seconds
 cpu time 0.09 seconds

Compare the CPU time of the first query (that uses a join), 0.05 seconds, with 0.09
seconds for the second query (that uses a subquery). Although there are many factors
that influence the run times of queries, generally a join runs faster than an equivalent
subquery.

Resetting PROC SQL Options with the RESET Statement
Use the RESET statement to add, drop, or change the options in the PROC SQL
statement. You can list the options in any order in the PROC SQL and RESET
statements. Options stay in effect until they are reset.

This example first uses the NOPRINT option to prevent the SELECT statement from
displaying its result table in SAS output. The RESET statement then changes the
NOPRINT option to PRINT (the default) and adds the NUMBER option, which displays
the row number in the result table.

proc sql noprint;
 title 'Countries with Population Under 20,000';
 select Name, Population from sql.countries;
reset print number;
 select Name, Population from sql.countries
 where population lt 20000;

Using PROC SQL Options to Create and Debug Queries 139

Output 5.1 Resetting PROC SQL Options with the RESET Statement

Improving Query Performance

Overview of Improving Query Performance
There are several ways to improve query performance, including the following:

• using indexes and composite indexes

• using the keyword ALL in set operations when you know that there are no duplicate
rows, or when it does not matter if you have duplicate rows in the result table

• omitting the ORDER BY clause when you create tables and views

• using in-line views instead of temporary tables (or vice versa)

• using joins instead of subqueries

• using WHERE expressions to limit the size of result tables that are created with joins

• using either PROC SQL options, SAS system options, or both to replace a PUT
function in a query with a logically equivalent expression

• replacing references to the DATE, TIME, DATETIME, and TODAY functions in a
query with their equivalent constant values before the query executes

• disabling the remerging of data when summary functions are used in a query

Using Indexes to Improve Performance
Indexes are created with the CREATE INDEX statement in PROC SQL or with the
MODIFY and INDEX CREATE statements in the DATASETS procedure. Indexes are
stored in specialized members of a SAS library and have a SAS member type of INDEX.
The values that are stored in an index are automatically updated if you make a change to
the underlying data.

Indexes can improve the performance of certain classes of retrievals. For example, if an
indexed column is compared to a constant value in a WHERE expression, then the index
will likely improve the query's performance. Indexing the column that is specified in a
correlated reference to an outer table also improves a subquery's (and hence, query's)
performance. Composite indexes can improve the performance of queries that compare

140 Chapter 5 • Programming with the SQL Procedure

the columns that are named in the composite index with constant values that are linked
using the AND operator. For example, if you have a compound index in the columns
CITY and STATE, and the WHERE expression is specified as WHERE CITY='xxx'
AND STATE='yy', then the index can be used to select that subset of rows more
efficiently. Indexes can also benefit queries that have a WHERE clause in this form:

... where var1 in (select item1 from table1) ...

The values of VAR1 from the outer query are found in the inner query by using the
index. An index can improve the processing of a table join, if the columns that
participate in the join are indexed in one of the tables. This optimization can be done for
equijoin queries only—that is, when the WHERE expression specifies that
table1.X=table2.Y.

Using the Keyword ALL in Set Operations
Set operators such as UNION, OUTER UNION, EXCEPT, and INTERSECT can be
used to combine queries. Specifying the optional ALL keyword prevents the final
process that eliminates duplicate rows from the result table. You should use the ALL
form when you know that there are no duplicate rows or when it does not matter whether
the duplicate rows remain in the result table.

Omitting the ORDER BY Clause When Creating Tables and Views
If you specify the ORDER BY clause when a table or view is created, then the data is
always displayed in that order unless you specify another ORDER BY clause in a query
that references that table or view. As with any sorting procedure, using ORDER BY
when retrieving data has certain performance costs, especially on large tables. If the
order of your output is not important for your results, then your queries will typically run
faster without an ORDER BY clause.

Using In-Line Views versus Temporary Tables
It is often helpful when you are exploring a problem to break a query down into several
steps and create temporary tables to hold the intermediate results. After you have worked
through the problem, combining the queries into one query by using in-line views can be
more efficient. However, under certain circumstances it is more efficient to use
temporary tables. You should try both methods to determine which is more efficient for
your case.

Comparing Subqueries with Joins
Many subqueries can also be expressed as joins. Generally, a join is processed at least as
efficiently as the subquery. PROC SQL stores the result values for each unique set of
correlation columns temporarily, thereby eliminating the need to calculate the subquery
more than once.

Using WHERE Expressions with Joins
When joining tables, you should specify a WHERE expression. Joins without WHERE
expressions are often time-consuming to evaluate because of the multiplier effect of the
Cartesian product. For example, joining two tables of 1,000 rows each without
specifying a WHERE expression or an ON clause, produces a result table with one
million rows.

Improving Query Performance 141

PROC SQL executes and obtains the correct results in unbalanced WHERE expressions
(or ON join expressions) in an equijoin, as shown here, but handles them inefficiently:

where table1.columnA-table2.columnB=0

It is more efficient to rewrite this clause to balance the expression so that columns from
each table are on alternate sides of the equals condition:

where table1.columnA=table2.columnB

PROC SQL sequentially processes joins that do not have an equijoin condition
evaluating each row against the WHERE expression: that is, joins without an equijoin
condition are not evaluated using sort-merge or index-lookup techniques. Evaluating left
and right outer joins is generally comparable to, or only slightly slower than, a standard
inner join. A full outer join usually requires two passes over both tables in the join,
although PROC SQL tries to store as much data as possible in buffers. Thus for small
tables, an outer join might be processed with only one physical read of the data.

Optimizing the PUT Function

Reducing the PUT Function
There are several ways that you can improve the performance of a query by optimizing
the PUT function. If you reference tables in a database, eliminating references to PUT
functions can enable more of the query to be passed to the database. It can simplify
SELECT statement evaluation for the default Base SAS engine.

There are five possible evaluations that are performed when optimizing the PUT
function:

• Functions, including PUT, that contain literal values.

• PUT functions in the WHERE and HAVING clauses that contain formats that are
supplied by SAS.

• PUT functions in the WHERE and HAVING clauses that contain user-defined
formats.

• PUT functions in any part of the SELECT statement that contain user-defined
formats that are defined with an OTHER= clause.

• PUT functions that are deployed inside the database.

Controlling PUT Function Optimization
• If you specify either the PROC SQL REDUCEPUT= option or the

SQLREDUCEPUT= system option, SAS optimizes the PUT function before the
query is executed.

The following SELECT statements are examples of queries that would be optimized:

select x, y from sqllibb where (PUT(x, abc.) in ('yes', 'no'));
select x from sqlliba where (PUT(x, udfmt.) = trim(left('small')));

• For databases that allow implicit pass-through when the row count for a table is not
known, PROC SQL allows the optimization in order for the query to be executed by
the database. When the PROC SQL REDUCEPUT= option or the
SQLREDUCEPUT= system option is set to DBMS, BASE, or ALL, PROC SQL
considers the value of the PROC SQL REDUCEPUTOBS= option or the
SQLREDUCEPUTOBS= system option and determines whether to optimize the
PUT function. The PROC SQL REDUCEPUTOBS= option or the
SQLREDUCEPUTOBS= system option specifies the minimum number of rows that

142 Chapter 5 • Programming with the SQL Procedure

must be in a table in order for PROC SQL to consider optimizing the PUT function
in a query. For databases that do not allow implicit pass-through, PROC SQL does
not perform the optimization, and more of the query is performed by SAS.

• Some formats, especially user-defined formats, can contain many format values.
Depending on the number of matches for a given PUT function expression, the
resulting expression can list many format values. If the number of format values
becomes too large, the query performance can degrade. When the PROC SQL
REDUCEPUT= option or the SQLREDUCEPUT= system option is set to DBMS,
BASE, or ALL, PROC SQL considers the value of the PROC SQL
REDUCEPUTVALUES= option or the SQLREDUCEPUTVALUES= system option
and determines whether to optimize the PUT function in a query. For databases that
do not allow implicit pass-through, PROC SQL does not perform the optimization,
and more of the query is performed by SAS.

For more information, see the REDUCEPUT=, REDUCEPUTOBS=, and
REDUCEPUTVALUES= options in Chapter 7, “SQL Procedure,” on page 209, and the
SQLREDUCEPUT=, SQLREDUCEPUTOBS=, and SQLREDUCEPUTVALUES=
system options in Appendix 1, “SQL Macro Variables and System Options,” on page
361.

Note: PROC SQL can consider both the REDUCEPUTOBS= and the
REDUCEPUTVALUES= options (or SQLREDUCEPUTOBS= and
SQLREDUCEPUTVALUES= system options) when trying to determine whether to
optimize the PUT function.

Deploying the PUT Function and SAS Formats inside a DBMS
SAS/ACCESS software for relational databases enables you to use the format publishing
macro to deploy or publish the PUT function implementation to the database as a
function named SAS_PUT(). As with any other programming function, the SAS_PUT()
function can take one or more input parameters and return an output value. The default
value for the SQLMAPPUTTO system option is SAS_PUT. After the SAS_PUT()
function is deployed in the database, you can use the SAS_PUT() function as you would
use any standard SQL function inside the database.

In addition, the SAS_PUT() function supports the use of SAS formats in SQL queries
that are submitted to the database. You can use the format publishing macro to publish to
the database both the formats that are supplied by SAS and the custom formats that you
create with the FORMAT procedure.

By publishing the PUT function implementation to the database as the SAS_PUT()
function to support the use of SAS formats, and by packaging both the formats that are
supplied by SAS and the custom formats that you create with the FORMAT procedure,
the following advantages are realized:

• The entire SQL query can be processed inside the database.

• The SAS format processing leverages the DBMS's scalable architecture.

• The results are grouped by the formatted data, and are extracted from the database.

Note: If you use the SQL_FUNCTIONS= LIBNAME statement option to remap the
PUT function (for example, SAS_PUT()), then the SQL_FUNCTIONS= LIBNAME
option takes precedence over the SQLMAPPUTTO= system option. For more
information, see “SQL_FUNCTIONS= LIBNAME Option” in SAS/ACCESS for
Relational Databases: Reference.

T I P Using both the SQLREDUCEPUT= system option (or the PROC SQL
REDUCEPUT= option) and the SAS_PUT() function can result in a significant
performance boost.

Improving Query Performance 143

For more information about using the In-database format publishing macro and the
SQLMAPPUTTO system option, see SAS/ACCESS for Relational Databases:
Reference.

Replacing References to the DATE, TIME, DATETIME, and TODAY
Functions

When the PROC SQL CONSTDATETIME option or the SQLCONSTDATETIME
system option is set, PROC SQL evaluates the DATE, TIME, DATETIME, and
TODAY functions in a query once, and uses those values throughout the query.
Computing these values once ensures consistent results when the functions are used
multiple times in a query, or when the query executes the functions close to a date or
time boundary. When referencing database tables, performance is enhanced because it
allows more of the query to be passed down to the database.

For more information, see the “SQLCONSTDATETIME System Option” on page 361
or the CONSTDATETIME option in the Base SAS Procedures Guide.

Note: If you specify both the PROC SQL REDUCEPUT option or the
SQLREDUCEPUT= system option and the PROC SQL CONSTDATETIME option
or the SQLCONSTDATETIME system option, PROC SQL replaces the DATE,
TIME, DATETIME, and TODAY functions with their respective values in order to
determine the PUT function value before the query executes.

Disabling the Remerging of Data When Using Summary Functions
When you use a summary function in a SELECT clause or a HAVING clause, PROC
SQL might remerge the data. Remerging the data involves two passes through the data.
If you set the PROC SQL NOREMERGE option or the NOSQLREMERGE system
option, PROC SQL will not process the remerging of data. When referencing database
tables, performance is enhanced because it enables more of the query to be passed down
to the database.

For more information, see the PROC SQL statement REMERGE option in the Base SAS
Procedures Guide and the SQLREMERGE system option in Appendix 1, “SQL Macro
Variables and System Options,” on page 361.

Accessing SAS System Information by Using
DICTIONARY Tables

What Are Dictionary Tables?
DICTIONARY tables are special read-only PROC SQL tables or views. They retrieve
information about all the SAS libraries, SAS data sets, SAS system options, and external
files that are associated with the current SAS session. For example, the
DICTIONARY.COLUMNS table contains information such as name, type, length, and
format, about all columns in all tables that are known to the current SAS session.

PROC SQL automatically assigns the DICTIONARY libref. To get information from
DICTIONARY tables, specify DICTIONARY.table-name in the FROM clause in a
SELECT statement in PROC SQL.

144 Chapter 5 • Programming with the SQL Procedure

DICTIONARY.table-name is valid in PROC SQL only. However, SAS provides PROC
SQL views, based on the DICTIONARY tables, that can be used in other SAS
procedures and in the DATA step. These views are stored in the SASHELP library and
are commonly called “SASHELP views.”

For an example of a DICTIONARY table, see “Example 6: Reporting from
DICTIONARY Tables” on page 257.

The following table describes the DICTIONARY tables that are available and shows the
associated SASHELP views for each table.

Table 5.1 DICTIONARY Tables and Associated SASHELP Views

DICTIONARY Table
SASHELP
View Description

CATALOGS VCATALG Contains information about known SAS catalogs.

CHECK_CONSTRAINTS VCHKCON Contains information about known check constraints.

COLUMNS VCOLUMN Contains information about columns in all known tables.

CONSTRAINT_COLUMN_USAGE VCNCOLU Contains information about columns that are referred to
by integrity constraints.

CONSTRAINT_TABLE_USAGE VCNTABU Contains information about tables that have integrity
constraints defined on them.

DATAITEMS VDATAIT Contains information about known information map data
items.

DESTINATIONS VDEST Contains information about known ODS destinations.

DICTIONARIES VDCTNRY Contains information about all DICTIONARY tables.

ENGINES VENGINE Contains information about SAS engines.

EXTFILES VEXTFL Contains information about known external files.

FILTERS VFILTER Contains information about known information map
filters.

FORMATS VFORMAT

VCFORMAT

Contains information about currently accessible formats
and informats.

FUNCTIONS VFUNC Contains information about currently accessible
functions.

GOPTIONS VGOPT

VALLOPT

Contains information about currently defined graphics
options (SAS/GRAPH software). SASHELP.VALLOPT
includes SAS system options as well as graphics options.

INDEXES VINDEX Contains information about known indexes.

INFOMAPS VINFOMP Contains information about known information maps.

Accessing SAS System Information by Using DICTIONARY Tables 145

DICTIONARY Table
SASHELP
View Description

LIBNAMES VLIBNAM Contains information about currently defined SAS
libraries.

MACROS VMACRO Contains information about currently defined macro
variables.

MEMBERS VMEMBER

VSACCES

VSCATLG

VSLIB

VSTABLE

VSTABVW

VSVIEW

Contains information about all objects that are in
currently defined SAS libraries. SASHELP.VMEMBER
contains information for all member types; the other
SASHELP views are specific to particular member types
(such as tables or views).

OPTIONS VOPTION

VALLOPT

Contains information about SAS system options.
SASHELP.VALLOPT includes graphics options as well
as SAS system options.

REFERENTIAL_CONSTRAINTS VREFCON Contains information about referential constraints.

REMEMBER VREMEMB Contains information about known remembers.

STYLES VSTYLE Contains information about known ODS styles.

TABLE_CONSTRAINTS VTABCON Contains information about integrity constraints in all
known tables.

TABLES VTABLE Contains information about known tables.

TITLES VTITLE Contains information about currently defined titles and
footnotes.

VIEWS VVIEW Contains information about known data views.

VIEW_SOURCES Not available Contains a list of tables (or other views) referenced by
the SQL or DATASTEP view, and a count of the
number of references.

Retrieving Information about DICTIONARY Tables and SASHELP
Views

To see how each DICTIONARY table is defined, submit a DESCRIBE TABLE
statement. This example shows the definition of DICTIONARY.TABLES:

proc sql;
 describe table dictionary.tables;

The results are written to the SAS log.

146 Chapter 5 • Programming with the SQL Procedure

Log 5.3 Definition of DICTIONARY.TABLES

NOTE: SQL table DICTIONARY.TABLES was created like:

create table DICTIONARY.TABLES
 (
 libname char(8) label='Library Name',
 memname char(32) label='Member Name',
 memtype char(8) label='Member Type',
 dbms_memtype char(32) label='DBMS Member Type',
 memlabel char(256) label='Data Set Label',
 typemem char(8) label='Data Set Type',
 crdate num format=DATETIME informat=DATETIME label='Date Created',
 modate num format=DATETIME informat=DATETIME label='Date Modified',
 nobs num label='Number of Physical Observations',
 obslen num label='Observation Length',
 nvar num label='Number of Variables',
 protect char(3) label='Type of Password Protection',
 compress char(8) label='Compression Routine',
 encrypt char(8) label='Encryption',
 npage num label='Number of Pages',
 filesize num label='Size of File',
 pcompress num label='Percent Compression',
 reuse char(3) label='Reuse Space',
 bufsize num label='Bufsize',
 delobs num label='Number of Deleted Observations',
 nlobs num label='Number of Logical Observations',
 maxvar num label='Longest variable name',
 maxlabel num label='Longest label',
 maxgen num label='Maximum number of generations',
 gen num label='Generation number',
 attr char(3) label='Data Set Attributes',
 indxtype char(9) label='Type of Indexes',
 datarep char(32) label='Data Representation',
 sortname char(8) label='Name of Collating Sequence',
 sorttype char(4) label='Sorting Type',
 sortchar char(8) label='Charset Sorted By',
 reqvector char(24) format=$HEX48 informat=$HEX48 label='Requirements Vector',
 datarepname char(170) label='Data Representation Name',
 encoding char(256) label='Data Encoding',
 audit char(8) label='Audit Trail Active?',
 audit_before char(8) label='Audit Before Image?',
 audit_admin char(8) label='Audit Admin Image?',
 audit_error char(8) label='Audit Error Image?',
 audit_data char(8) label='Audit Data Image?',
 num_character num label='Number of Character Variables',
 num_numeric num label='Number of Numeric Variables'
);

Similarly, you can use the DESCRIBE VIEW statement in PROC SQL to determine
how a SASHELP view is defined. Here is an example:

proc sql;
 describe view sashelp.vtable;

Accessing SAS System Information by Using DICTIONARY Tables 147

Log 5.4 Description of SASHELP.VTABLE

NOTE: SQL view SASHELP.VSTABVW is defined as:

 select libname, memname, memtype
 from DICTIONARY.MEMBERS
 where (memtype='VIEW') or (memtype='DATA')
 order by libname asc, memname asc;

Using DICTIONARY.TABLES
DICTIONARY tables are commonly used to monitor and manage SAS sessions because
the data is more easily manipulated than the output from other sources such as PROC
DATASETS. You can query DICTIONARY tables the same way you query any other
table, including subsetting with a WHERE clause, ordering the results, and creating
PROC SQL views.

Note that many character values in the DICTIONARY tables are stored as all-uppercase
characters; you should design your queries accordingly.

Because DICTIONARY tables are read-only objects, you cannot insert rows or columns,
alter column attributes, or add integrity constraints to them.

Note: For DICTIONARY.TABLES and SASHELP.VTABLE, if a table is read-
protected with a password, then the only information that is listed for that table is the
library name, member name, member type, and type of password protection. All
other information is set to missing.

Note: An error occurs if DICTIONARY.TABLES is used to retrieve information about
an SQL view that exists in one library but has an input table from a second library
that has not been assigned.

The following query uses a SELECT and subsetting WHERE clause to retrieve
information about permanent tables and views that appear in the SQL library:

libname sql '\\sashq\root\pub\pubdoc\doc\901\authoring\sqlproc\miscsrc\sasfiles\';
options nodate nonumber linesize=80 pagesize=60;

libname sql 'SAS-library';

proc sql;
 title 'All Tables and Views in the SQL Library';
 select libname, memname, memtype, nobs
 from dictionary.tables
 where libname='SQL';

148 Chapter 5 • Programming with the SQL Procedure

Output 5.2 Tables and Views Used in This Document

Using DICTIONARY.COLUMNS
DICTIONARY tables are useful when you want to find specific columns to include in
reports. The following query shows which of the tables that are used in this document
contain the Country column:

libname sql 'SAS-library';

Accessing SAS System Information by Using DICTIONARY Tables 149

proc sql;
 title 'All Tables That Contain the Country Column';
 select libname, memname, name
 from dictionary.columns
 where name='Country' and
 libname='SQL';

Output 5.3 Using DICTONARY.COLUMNS to Locate Specific Columns

DICTIONARY Tables and Performance
When querying a DICTIONARY table, SAS launches a discovery process that gathers
information that is pertinent to that table. Depending on the DICTIONARY table that is
being queried, this discovery process can search libraries, open tables, and execute
views. Unlike other SAS procedures and the DATA step, PROC SQL can mitigate this
process by optimizing the query before the discovery process is launched. Therefore,
although it is possible to access DICTIONARY table information with SAS procedures
or the DATA step by using the SASHELP views, it is often more efficient to use PROC
SQL instead.

Note: You cannot use data set options with DICTIONARY tables.

For example, the following programs produce the same result, but the PROC SQL step
runs much faster because the WHERE clause is processed before the tables that are
referenced by the SASHELP.VCOLUMN view are opened:

data mytable;
 set sashelp.vcolumn;
 where libname='WORK' and memname='SALES';
run;

proc sql;
 create table mytable as
 select * from sashelp.vcolumn
 where libname='WORK' and memname='SALES';
quit;

Note: SAS does not maintain DICTIONARY table information between queries. Each
query of a DICTIONARY table launches a new discovery process.

If you are querying the same DICTIONARY table several times in a row, then you can
get even faster performance by creating a temporary SAS data set (with the DATA step
SET statement or the PROC SQL CREATE TABLE AS statement) with the information
that you want and running your query against that data set.

150 Chapter 5 • Programming with the SQL Procedure

When you query DICTIONARY.TABLES or SASHELP.VTABLE, all the tables and
views in all the libraries that are assigned to the SAS session are opened to retrieve the
requested information.

You can use a WHERE clause to help restrict which libraries are searched. However, the
WHERE clause will not process most function calls such as UPCASE.

For example, if where UPCASE (libname) ='WORK' is used, the UPCASE
function prevents the WHERE clause from optimizing this condition. All libraries that
are assigned to the SAS session are searched. Searching all the libraries could cause an
unexpected increase in search time, depending on the number of libraries that are
assigned to the SAS session.

All librefs and SAS table names are stored in uppercase. If you supply values for
LIBNAME and MEMNAME values in uppercase, and you remove the UPCASE
function, the WHERE clause will be optimized and performance will be improved. In
the previous example, the code would be changed to where libname='WORK'.

Note: If you query table information from a library that is assigned to an external
database, and you use the LIBNAME statement PRESERVE_TAB_NAMES=YES
option or the PRESERVE_COL_NAMES=YES option, and you provide the table or
column name as it appears in the database, you do not need to use the UPCASE
function.

Using SAS Data Set Options with PROC SQL
In PROC SQL, you can apply most of the SAS data set options, such as KEEP= and
DROP=, to tables or SAS/ACCESS views any time you specify a table or SAS/ACCESS
view. In the SQL procedure, SAS data set options that are separated by spaces are
enclosed in parentheses. The data set options immediately follow the table or
SAS/ACCESS view name. In the following PROC SQL step, the RENAME= data set
option renames LNAME to LASTNAME for the STAFF1 table. The OBS= data set
option restricts the number of rows that are read from STAFF1 to 15:

proc sql;
 create table
 staff1(rename=(lname=lastname)) as
 select *
 from staff(obs=15);

SAS data set options can be combined with SQL statement arguments. In the following
PROC SQL step, the PW= data set option assigns a password to the TEST table, and the
ALTER= data set option assigns an ALTER password to the STAFF1 table:

proc sql;
 create table test
 (a character, b numeric, pw=cat);
 create index staffidx on
 staff1 (lastname, alter=dog);

In this PROC SQL step, the PW= data set option assigns a password to the ONE table.
The password is used when inserting a row and updating the table.

proc sql;
 create table one(pw=red, col1 num, col2 num, col3 num);
 quit;

Using SAS Data Set Options with PROC SQL 151

proc sql;
 insert into one(pw=red, col1, col3)
 values(1, 3);
quit;
proc sql;
 update one(pw=red)
 set col2 = 22
 where col2 = . ;
quit;

You cannot use SAS data set options with DICTIONARY tables because
DICTIONARY tables are read-only objects.

The only SAS data set options that you can use with PROC SQL views are data set
options that assign and provide SAS passwords: READ=, WRITE=, ALTER=, and
PW=.

For more information about SAS data set options, see SAS Data Set Options: Reference.

Using PROC SQL with the SAS Macro Facility

Overview of Using PROC SQL with the SAS Macro Facility
The macro facility is a programming tool that you can use to extend and customize SAS
software. The macro facility reduces the amount of text that you must enter to perform
common or repeated tasks and improves the efficiency and usefulness of your SQL
programs.

The macro facility enables you to assign a name to character strings or groups of SAS
programming statements. Thereafter, you can work with the names rather than with the
text itself. For more information about the SAS macro facility, see SAS Macro
Language: Reference.

Macro variables provide an efficient way to replace text strings in SAS code. The macro
variables that you create and name are called user-defined macro variables. The macros
variables that are defined by SAS are called automatic macro variables. PROC SQL
produces six automatic macro variables (SQLOBS, SQLRC, SQLOOPS,
SQLEXITCODE, SQLXRC, and SQLXMSG) to help you troubleshoot your programs.
For more information, see “Using the PROC SQL Automatic Macro Variables” on page
157.

Creating Macro Variables in PROC SQL

Overview of Creating Macro Variables in PROC SQL
Other software vendors' SQL products allow the embedding of SQL into another
language. References to variables (columns) of that language are termed host-variable
references. They are differentiated from references to columns in tables by names that
are prefixed with a colon. The host-variable stores the values of the object-items that are
listed in the SELECT clause.

The only host language that is currently available in SAS is the macro language, which
is part of Base SAS software. When a calculation is performed on a column's value, its
result can be stored, using :macro-variable, in the macro facility. The result can then be
referenced by that name in another PROC SQL query or SAS procedure. Host-variable

152 Chapter 5 • Programming with the SQL Procedure

can be used only in the outer query of a SELECT statement, not in a subquery. Host-
variable cannot be used in a CREATE statement.

If the query produces more than one row of output, then the macro variable will contain
only the value from the first row. If the query has no rows in its output, then the macro
variable is not modified. If the macro variable does not exist yet, it will not be created.
The PROC SQL macro variable SQLOBS contains the number of rows that are produced
by the query.

Note: The SQLOBS automatic macro variable is assigned a value after the SQL
SELECT statement executes.

Creating Macro Variables from the First Row of a Query Result
If you specify a single macro variable in the INTO clause, then PROC SQL assigns the
variable the value from the first row only of the appropriate column in the SELECT list.
In this example, &country1 is assigned the value from the first row of the Country
column, and &barrels1 is assigned the value from the first row of the Barrels column.
The NOPRINT option prevents PROC SQL from displaying the results of the query. The
%PUT statement writes the contents of the macro variables to the SAS log.

libname sql 'SAS-library';

proc sql noprint;
 select country, barrels
 into :country1, :barrels1
 from sql.oilrsrvs;

%put &country1 &barrels1;

Log 5.5 Creating Macro Variables from the First Row of a Query Result

4 proc sql noprint;
5 select country, barrels
6 into :country1, :barrels1
7 from sql.oilrsrvs;
8
9 %put &country1 &barrels1;
Algeria 9,200,000,000
NOTE: PROCEDURE SQL used:
 real time 0.12 seconds

Creating a Macro Variable from the Result of an Aggregate Function
A useful feature of macro variables is that they enable you to display data values in SAS
titles. The following example prints a subset of the WORLDTEMPS table and lists the
highest temperature in Canada in the title:

libname sql 'SAS-library';

proc sql outobs=12;
 reset noprint;
 select max(AvgHigh)
 into :maxtemp
 from sql.worldtemps
 where country = 'Canada';
reset print;
 title "The Highest Temperature in Canada: &maxtemp";
 select city, AvgHigh format 4.1

Using PROC SQL with the SAS Macro Facility 153

 from sql.worldtemps
 where country = 'Canada';

Note: You must use double quotation marks in the TITLE statement to resolve the
reference to the macro variable.

Output 5.4 Including a Macro Variable Reference in the Title

Creating Multiple Macro Variables
You can create one new macro variable per row from the result of a SELECT statement.
Use the keywords THROUGH, THRU, or a hyphen (-) in an INTO clause to create a
range of macro variables.

Note: When you specify a range of macro variables, the SAS macro facility creates only
the number of macro variables that are needed. For example, if you
specify :var1-:var9999 and only 55 variables are needed, only :var1-:var55
is created. The SQLOBS automatic variable is useful if a subsequent part of your
program needs to know how many variables were actually created. In this example,
SQLOBS would have a value of 55.

This example assigns values to macro variables from the first four rows of the Name
column and the first three rows of the Population column. The %PUT statements write
the results to the SAS log.

libname sql 'SAS-library';

proc sql noprint;
 select name, Population
 into :country1 - :country4, :pop1 - :pop3
 from sql.countries;

%put &country1 &pop1;
%put &country2 &pop2;
%put &country3 &pop3;
%put &country4;

154 Chapter 5 • Programming with the SQL Procedure

Log 5.6 Creating Multiple Macro Variables

4 proc sql noprint;
5 select name, Population
6 into :country1 - :country4, :pop1 - :pop3
7 from sql.countries;
8
9 %put &country1 &pop1;
Afghanistan 17070323
10 %put &country2 &pop2;
Albania 3407400
11 %put &country3 &pop3;
Algeria 28171132
12 %put &country4;
Andorra

Concatenating Values in Macro Variables
You can concatenate the values of one column into one macro variable. This form is
useful for building a list of variables or constants. Use the SEPARATED BY keywords
to specify a character to delimit the values in the macro variable.

This example assigns the first five values from the Name column of the COUNTRIES
table to the &countries macro variable. The INOBS option limits PROC SQL to using
the first five rows of the COUNTRIES table. A comma and a space are used to delimit
the values in the macro variable.

libname sql 'SAS-library';

proc sql noprint inobs=5;
 select Name
 into :countries separated by ', '
 from sql.countries;

%put &countries;

Log 5.7 Concatenating Values in Macro Variables

4 proc sql noprint inobs=5;
5 select Name
6 into :countries separated by ', '
7 from sql.countries;
WARNING: Only 5 records were read from SQL.COUNTRIES due to INOBS= option.
8
9 %put &countries;
Afghanistan, Albania, Algeria, Andorra, Angola

The leading and trailing blanks are trimmed from the values before the macro variables
are created. If you do not want the blanks to be trimmed, then add NOTRIM to the INTO
clause. Here is the previous example with NOTRIM added:

libname sql 'SAS-library';

proc sql noprint inobs=5;
 select Name
 into :countries separated by ',' NOTRIM
 from sql.countries;

Using PROC SQL with the SAS Macro Facility 155

%put &countries;

Log 5.8 Concatenating Values in Macro Variables

1 proc sql noprint inobs=5;
2 select Name
3 into :countries separated by ',' NOTRIM
4 from sql.countries;
WARNING: Only 5 records were read from SQL.COUNTRIES due to INOBS= option.
5
6 %put &countries;
Afghanistan ,Albania ,Algeria
 ,Andorra ,Angola

Defining Macros to Create Tables
Macros are useful as interfaces for table creation. You can use the SAS macro facility to
help you create new tables and add rows to existing tables.

The following example creates a table that lists people to serve as referees for reviews of
academic papers. No more than three people per subject are allowed in a table. The
macro that is defined in this example checks the number of referees before it inserts a
new referee's name into the table. The macro has two parameters: the referee's name and
the subject matter of the academic paper.

libname sql 'SAS-library';

proc sql;
create table sql.referee
 (Name char(15),
 Subject char(15));

 /* define the macro */
%macro addref(name,subject);
%local count;

 /* are there three referees in the table? */
reset noprint;
 select count(*)
 into :count
 from sql.referee
 where subject="&subject";

%if &count ge 3 %then %do;
 reset print;
 title "ERROR: &name not inserted for subject – &subject..";
 title2 " There are 3 referees already.";
 select * from sql.referee where subject="&subject";
 reset noprint;
 %end;

%else %do;
 insert into sql.referee(name,subject) values("&name","&subject");
 %put NOTE: &name has been added for subject – &subject..;
 %end;

156 Chapter 5 • Programming with the SQL Procedure

%mend;

Submit the %ADDREF() macro with its two parameters to add referee names to the
table. Each time you submit the macro, a message is written to the SAS log.

%addref(Conner,sailing);
%addref(Fay,sailing);
%addref(Einstein,relativity);
%addref(Smythe,sailing);
%addref(Naish,sailing);

Log 5.9 Defining Macros to Create Tables

34 %addref(Conner,sailing);
NOTE: 1 row was inserted into SQL.REFEREE.

NOTE: Conner has been added for subject - sailing.
35 %addref(Fay,sailing);
NOTE: 1 row was inserted into SQL.REFEREE.

NOTE: Fay has been added for subject - sailing.
36 %addref(Einstein,relativity);
NOTE: 1 row was inserted into SQL.REFEREE.

NOTE: Einstein has been added for subject - relativity.
37 %addref(Smythe,sailing);
NOTE: 1 row was inserted into SQL.REFEREE.

NOTE: Smythe has been added for subject - sailing.
38 %addref(Naish,sailing);

The output has a row added with each execution of the %ADDREF() macro. When the
table contains three referee names, it is displayed in SAS output with the message that it
can accept no more referees.

Output 5.5 Result Table and Message Created with SAS Macro Language Interface

Using the PROC SQL Automatic Macro Variables
PROC SQL sets up macro variables with certain values after it executes each statement.
These macro variables can be tested inside a macro to determine whether to continue
executing the PROC SQL step.

Using PROC SQL with the SAS Macro Facility 157

After each PROC SQL statement has executed, the following macro variables are
updated with these values:

SQLEXITCODE
contains the highest return code that occurred from some types of SQL insert
failures. This return code is written to the SYSERR macro variable when PROC
SQL terminates.

SQLOBS
contains the number of rows that were processed by an SQL procedure statement.
For example, the SQLOBS macro variable contains the number of rows that were
formatted and displayed in SAS output by a SELECT statement or the number of
rows that were deleted by a DELETE statement.

When the NOPRINT option is specified, the value of the SQLOBS macro variable
depends on whether an output table, single macro variable, macro variable list, or
macro variable range is created:

• If no output table, macro variable list, or macro variable range is created, then
SQLOBS contains the value 1.

• If an output table is created, then SQLOBS contains the number of rows in the
output table.

• If a single macro variable is created, then SQLOBS contains the value 1.

• If a macro variable list or macro variable range is created, then SQLOBS
contains the number of rows that are processed to create the macro variable list
or range.

If an SQL view is created, then SQLOBS contains the value 0.

Note: The SQLOBS automatic macro variable is assigned a value after the SQL
SELECT statement executes.

SQLOOPS
contains the number of iterations that the inner loop of PROC SQL processes. The
number of iterations increases proportionally with the complexity of the query. For
more information, see “Limiting Iterations with the LOOPS= Option” on page 137
and LOOPS= in the Base SAS Procedures Guide.

SQLRC
contains the following status values that indicate the success of the SQL procedure
statement:

0
PROC SQL statement completed successfully with no errors.

4
PROC SQL statement encountered a situation for which it issued a warning. The
statement continued to execute.

8
PROC SQL statement encountered an error. The statement stopped execution at
this point.

12
PROC SQL statement encountered an internal error, indicating a bug in PROC
SQL that should be reported to SAS Technical Support. These errors can occur
only during compile time.

158 Chapter 5 • Programming with the SQL Procedure

16
PROC SQL statement encountered a user error. For example, this error code is
used, when a subquery (that can return only a single value) evaluates to more
than one row. These errors can be detected only during run time.

24
PROC SQL statement encountered a system error. For example, this error is
used, if the system cannot write to a PROC SQL table because the disk is full.
These errors can occur only during run time.

28
PROC SQL statement encountered an internal error, indicating a bug in PROC
SQL that should be reported to SAS Technical Support. These errors can occur
only during run time.

The value of SQLRC can vary based on the value of the PROC SQL statement
UNDO_POLICY= option or the SQLUNDOPOLICY system option.

For example, the values for the SQLRC return code differ based on the value of the
UNDO_POLICY= option or the SQLUNDOPOLICY system option if you attempt
to insert duplicate values into an index that is defined using the CREATE UNIQUE
INDEX statement:

• If you set the UNDO_POLICY= option or the SQLUNDOPOLICY system
option to either REQUIRED or OPTIONAL, and you attempt to insert a
duplicate index value, SAS creates and tries to maintain a copy of the table
before and after updates are applied. SAS detects an error condition and supplies
a return code to PROC SQL, which stops execution as soon as the error condition
is received. SQLRC contains the value 24.

• If you set the UNDO_POLICY= option or the SQLUNDOPOLICY system
option to NONE and you attempt to insert a duplicate index value, SAS does not
create a before-and-after copy of the table. SAS does not detect an error
condition and does not supply a return code to PROC SQL, which attempts to
continue to process the updates. SQLRC contains the value 8.

SQLXMSG
contains descriptive information and the DBMS-specific return code for the error
that is returned by the pass-through facility.

Note: Because the value of the SQLXMSG macro variable can contain special
characters (such as &, %, /, *, and ;), use the %SUPERQ macro function when
printing the following value: %put %superq(sqlxmsg); For information
about the %SUPERQ function, see SAS Macro Language: Reference.

SQLXRC
contains the DBMS-specific return code that is returned by the pass-through facility.

Macro variables that are generated by PROC SQL follow the scoping rules for %LET.
For more information about macro variable scoping, see SAS Macro Language:
Reference.

Users of SAS/AF software can access these automatic macro variables in SAS
Component Language (SCL) programs by using the SYMGET function. The following
example uses the VALIDATE statement in a SAS/AF software application to check the
syntax of a block of code. Before it issues the CREATE VIEW statement, the
application checks that the view is accessible.

submit sql immediate;
 validate &viewdef;
end submit;

Using PROC SQL with the SAS Macro Facility 159

if symget('SQLRC') gt 4 then
 do;
 ... the view is not valid ...
 end;
else do;
 submit sql immediate;
 create view &viewname as &viewdef;
 end submit;
end;

The following example retrieves the data from the COUNTRIES table, but does not
display the table because the NOPRINT option is specified in the PROC SQL statement.
The %PUT macro language statement displays the three automatic macro variable values
in the SAS log. For more information about the %PUT statement and the SAS macro
facility, see SAS Macro Language: Reference.

libname sql 'SAS-library';

proc sql noprint;
 select * from sql.countries;
%put SQLOBS=*&sqlobs* SQLOOPS=*&sqloops* SQLRC=*&sqlrc*;

Log 5.10 Using the PROC SQL Automatic Macro Variables

SQLOBS=*1* SQLOOPS=*11* SQLRC=*0*

Notice that the value of SQLOBS is 1. When the NOPRINT option is used and no table
or macro variables are created, SQLOBS returns a value of 1 because only one row is
processed.

Note: You can use the _AUTOMATIC_ option in the %PUT statement to list the values
of all automatic macro variables. The list depends on the SAS products that are
installed at your site.

Formatting PROC SQL Output by Using the
REPORT Procedure

SQL provides limited output formatting capabilities. Some SQL vendors add output
formatting statements to their products to address these limitations. SAS has reporting
tools that enhance the appearance of PROC SQL output.

For example, SQL cannot display only the first occurrence of a repeating value in a
column in its output. The following example lists cities in the USCITYCOORDS table.
Notice the repeating values in the State column.

libname sql 'SAS-library';

proc sql outobs=10;
 title 'US Cities';
 select State, City, latitude, Longitude
 from sql.uscitycoords
 order by state;

160 Chapter 5 • Programming with the SQL Procedure

Output 5.6 USCITYCOORDS Table Showing Repeating State Values

The following code uses PROC REPORT to format the output so that the state codes
appear only once for each state group. A WHERE clause subsets the data so that the
report lists the coordinates of cities in Pacific Rim states only. For more information
about PROC REPORT, see the Base SAS Procedures Guide.

libname sql 'SAS-library';

proc sql noprint;
 create table sql.cityreport as
 select *
 from sql.uscitycoords
 group by state;

proc report data=sql.cityreport
 headline nowd
 headskip;
 title 'Coordinates of U.S. Cities in Pacific Rim States';
 column state city ('Coordinates' latitude longitude);
 define state / order format=$2. width=5 'State';
 define city / order format=$15. width=15 'City';
 define latitude / display format=4. width=8 'Latitude';
 define longitude / display format=4. width=9 'Longitude';
 where state='AK' or
 state='HI' or
 state='WA' or
 state='OR' or
 state='CA';
run;

Formatting PROC SQL Output by Using the REPORT Procedure 161

Output 5.7 PROC REPORT Output Showing the First Occurrence Only of Each State Value

Accessing a DBMS with SAS/ACCESS Software

Overview of Accessing a DBMS with SAS/ACCESS Software
SAS/ACCESS software for relational databases provides an interface between SAS
software and data in other vendors' database management systems (DBMSs).
SAS/ACCESS software provides dynamic access to DBMS data through the

162 Chapter 5 • Programming with the SQL Procedure

SAS/ACCESS LIBNAME statement and the PROC SQL pass-through facility. The
LIBNAME statement enables you to assign SAS librefs to DBMS objects such as
schemas and databases. The pass-through facility enables you to interact with a DBMS
by using its SQL syntax without leaving your SAS session.

It is recommended that you use the SAS/ACCESS LIBNAME statement to access your
DBMS data because it is usually the fastest and most direct method of accessing DBMS
data. The LIBNAME statement offers the following advantages:

• Significantly fewer lines of SAS code are required to perform operations in your
DBMS. For example, a single LIBNAME statement establishes a connection to your
DBMS, enables you to specify how your data is processed, and enables you to easily
browse your DBMS tables in SAS.

• You do not need to know your DBMS's SQL language to access and manipulate your
DBMS data. You can use SAS procedures, such as PROC SQL, or DATA step
programming on any libref that references DBMS data. You can read, insert, update,
delete, and append data, as well as create and drop DBMS tables by using normal
SAS syntax.

• The LIBNAME statement provides more control over DBMS operations such as
locking, spooling, and data type conversion through the many LIBNAME options
and data set options.

• The LIBNAME engine optimizes the processing of joins and WHERE clauses by
passing these operations directly to the DBMS to take advantage of the indexing and
other processing capabilities of your DBMS.

An exception to this recommendation occurs when you need to use SQL that does not
conform to the ANSI standard. The SAS/ACCESS LIBNAME statement accepts only
ANSI standard for SQL, but the PROC SQL pass-through facility accepts all the
extensions to SQL that are provided by your DBMS. Another advantage of this access
method is that pass-through facility statements enable the DBMS to optimize queries
when the queries have summary functions (such as AVG and COUNT), GROUP BY
clauses, or columns that were created by expressions (such as the COMPUTED
function).

For more information about SAS/ACCESS software, see SAS/ACCESS for Relational
Databases: Reference.

Connecting to a DBMS by Using the LIBNAME Statement

Overview of Connecting to a DBMS by Using the LIBNAME
Statement
Use the LIBNAME statement to read from and write to a DBMS object as if it were a
SAS data set. After connecting to a DBMS table or view by using the LIBNAME
statement, you can use PROC SQL to interact with the DBMS data.

For many DBMSs, you can directly access DBMS data by assigning a libref to the
DBMS by using the SAS/ACCESS LIBNAME statement. Once you have associated a
libref with the DBMS, you can specify a DBMS table in a two-level SAS name and
work with the table like any SAS data set. You can also embed the LIBNAME statement
in a PROC SQL view. For more information, see the “CREATE VIEW Statement” on
page 234.

PROC SQL takes advantage of the capabilities of a DBMS by passing it certain
operations whenever possible. For example, before implementing a join, PROC SQL
checks to determine whether the DBMS can perform the join. If it can, then PROC SQL
passes the join to the DBMS, which enhances performance by reducing data movement

Accessing a DBMS with SAS/ACCESS Software 163

and translation. If the DBMS cannot perform the join, then PROC SQL processes the
join. Using the SAS/ACCESS LIBNAME statement can often provide you with the
performance benefits of the SQL procedure pass-through facility without writing
DBMS-specific code.

Note: You can use the DBIDIRECTEXEC system option to send a PROC SQL
CREATE TABLE AS SELECT statement or a DELETE statement directly to the
database for execution, which could result in CPU and I/O performance
improvement. For more information, see the SAS/ACCESS documentation for your
DBMS.

To use the SAS/ACCESS LIBNAME statement, you must have SAS/ACCESS software
installed for your DBMS. For more information about the SAS/ACCESS LIBNAME
statement, see the SAS/ACCESS documentation for your DBMS.

Querying a DBMS Table
This example uses PROC SQL to query the Oracle table PAYROLL. The PROC SQL
query retrieves all job codes and provides a total salary amount for each job code.

Note: By default, Oracle does not order the output results. To specify the order in which
rows are displayed in the output results, you must use the ORDER BY clause in the
SELECT statement.

libname mydblib oracle user=user-id password=password
 path=path-name schema=schema-name;

proc sql;
 select jobcode label='Jobcode',
 sum(salary) as total
 label='Total for Group'
 format=dollar11.2
 from mydblib.payroll
 group by jobcode;
quit;

164 Chapter 5 • Programming with the SQL Procedure

Output 5.8 Output from Querying a DBMS Table

Creating a PROC SQL View of a DBMS Table
PROC SQL views are stored query expressions that read data values from their
underlying files, which can include SAS/ACCESS views of DBMS data. While DATA
step views of DBMS data can be used only to read the data, PROC SQL views of DBMS
data can be used to update the underlying data if the following conditions are met:

• The PROC SQL view is based on only one DBMS table (or on a DBMS view that is
based on only one DBMS table).

• The PROC SQL view has no calculated fields.

The following example uses the LIBNAME statement to connect to an ORACLE
database, create a temporary PROC SQL view of the ORACLE table SCHEDULE, and
print the view by using the PRINT procedure. The LIBNAME engine optimizes the
processing of joins and WHERE clauses by passing these operations directly to the
DBMS to take advantage of DBMS indexing and processing capabilities.

libname mydblib oracle user=user-id password=password
proc sql;
 create view LON as
 select flight, dates, idnum
 from mydblib.schedule

Accessing a DBMS with SAS/ACCESS Software 165

 where dest='LON';
quit;

proc print data=work.LON noobs;
run;

Output 5.9 Output from the PRINT Procedure

Connecting to a DBMS by Using the SQL Procedure Pass-Through
Facility

What Is the Pass-Through Facility?
The SQL procedure pass-through facility enables you to send DBMS-specific SQL
statements directly to a DBMS for execution. The pass-through facility uses a
SAS/ACCESS interface engine to connect to the DBMS. Therefore, you must have
SAS/ACCESS software installed for your DBMS.

You submit SQL statements that are DBMS-specific. For example, you pass Transact-
SQL statements to a Sybase database. The pass-through facility's basic syntax is the

166 Chapter 5 • Programming with the SQL Procedure

same for all the DBMSs. Only the statements that are used to connect to the DBMS and
the SQL statements are DBMS-specific.

With the pass-through facility, you can perform the following tasks:

• Establish a connection with the DBMS by using a CONNECT statement and
terminate the connection with the DISCONNECT statement.

• Send nonquery DBMS-specific SQL statements to the DBMS by using the
EXECUTE statement.

• Retrieve data from the DBMS to be used in a PROC SQL query with the
CONNECTION TO component in a SELECT statement's FROM clause.

You can use the pass-through facility statements in a query, or you can store them in a
PROC SQL view. When a view is stored, any options that are specified in the
corresponding CONNECT statement are also stored. Thus, when the PROC SQL view is
used in a SAS program, SAS can automatically establish the appropriate connection to
the DBMS.

For more information, see the CONNECT statement, the DISCONNECT statement, the
EXECUTE statement, and the CONNECTION TO statement in Appendix 1, “SQL
Macro Variables and System Options,” on page 361, and the pass-through facility for
relational databases in SAS/ACCESS for Relational Databases: Reference.

Note: SAS procedures that perform multipass processing cannot operate on PROC SQL
views that store pass-through facility statements, because the pass-through facility
does not allow reopening of a table after the first record has been retrieved. To work
around this limitation, create a SAS data set from the view and use the SAS data set
as the input data set.

Return Codes
As you use PROC SQL statements that are available in the pass-through facility, any
errors are written to the SAS log. The return codes and messages that are generated by
the pass-through facility are available to you through the SQLXRC and SQLXMSG
macro variables. Both macro variables are described in “Using the PROC SQL
Automatic Macro Variables” on page 157.

Pass-Through Example
In this example, SAS/ACCESS connects to an ORACLE database by using the alias
ora2, selects all rows in the STAFF table, and displays the first 15 rows of data by
using PROC SQL.

proc sql outobs=15;
 connect to oracle as ora2 (user=user-id password=password);
 select * from connection to ora2 (select lname, fname, state from staff);
 disconnect from ora2;
quit;

Accessing a DBMS with SAS/ACCESS Software 167

Output 5.10 Output from the Pass-Through Facility Example

Updating PROC SQL and SAS/ACCESS Views
You can update PROC SQL and SAS/ACCESS views by using the INSERT, DELETE,
and UPDATE statements, under the following conditions:

• If the view accesses a DBMS table, then you must have been granted the appropriate
authorization by the external database management system (for example, DB2). You
must have installed the SAS/ACCESS software for your DBMS. For more
information about SAS/ACCESS views, see the SAS/ACCESS interface guide for
your DBMS.

• You can update only a single table through a view. The table cannot be joined to
another table or linked to another table with a set-operator. The view cannot contain
a subquery.

• You can update a column in a view by using the column's alias, but you cannot
update a derived column—that is, a column that is produced by an expression. In the
following example, you can update the column SS, but not WeeklySalary:

create view EmployeeSalaries as
 select Employee, SSNumber as SS,
 Salary/52 as WeeklySalary
 from employees;

168 Chapter 5 • Programming with the SQL Procedure

• You cannot update a view that contains an ORDER BY.

Note: Beginning with SAS 9, PROC SQL views, the pass-through facility, and the
SAS/ACCESS LIBNAME statement are the preferred ways to access relational
DBMS data. SAS/ACCESS views are no longer recommended. You can convert
existing SAS/ACCESS views to PROC SQL views by using the CV2VIEW
procedure. For more information, see Chapter 33, “CV2VIEW Procedure” in
SAS/ACCESS for Relational Databases: Reference.

Using the Output Delivery System with PROC
SQL

The Output Delivery System (ODS) enables you to produce the output from PROC SQL
in a variety of different formats such as PostScript, HTML, or list output. ODS defines
the structure of the raw output from SAS procedures and from the SAS DATA step. The
combination of data with a definition of its output structure is called an output object.
Output objects can be sent to any of the various ODS destinations, which include listing,
HTML, output, and printer. When new destinations are added to ODS, they
automatically become available to PROC SQL, to all other SAS procedures that support
ODS, and to the DATA step. For more information about ODS, see the SAS Output
Delivery System: User's Guide.

The following example opens the HTML destination and specifies ODSOUT.HTM as
the file that will contain the HTML output. The output from PROC SQL is sent to
ODSOUT.HTM.

Note: This example uses filenames that might not be valid in all operating
environments. To run the example successfully in your operating environment, you
might need to change the file specifications.

Note: Some browsers require an extension of HTM or HTML on the filename.

libname sql 'SAS-library';

ods html body='odsout.htm';
 proc sql outobs=12;
 title 'Coordinates of U.S. Cities';
 select *
 from sql.uscitycoords;

Using the Output Delivery System with PROC SQL 169

Output 5.11 ODS HTML Output

170 Chapter 5 • Programming with the SQL Procedure

Chapter 6

Practical Problem-Solving with
PROC SQL

Overview . 172

Computing a Weighted Average . 172
Problem . 172
Background Information . 172
Solution . 173
How It Works . 174

Comparing Tables . 174
Problem . 174
Background Information . 175
Solution . 175
How It Works . 176

Overlaying Missing Data Values . 176
Problem . 176
Background Information . 176
Solution . 177
How It Works . 178

Computing Percentages within Subtotals . 179
Problem . 179
Background Information . 179
Solution . 180
How It Works . 181

Counting Duplicate Rows in a Table . 181
Problem . 181
Background Information . 181
Solution . 182
How It Works . 183

Expanding Hierarchical Data in a Table . 183
Problem . 183
Background Information . 183
Solution . 184
How It Works . 185

Summarizing Data in Multiple Columns . 186
Problem . 186
Background Information . 186
Solution . 187
How It Works . 187

Creating a Summary Report . 188

171

Problem . 188
Background Information . 188
Solution . 189
How It Works . 190

Creating a Customized Sort Order . 191
Problem . 191
Background Information . 191
Solution . 192
How It Works . 193

Conditionally Updating a Table . 194
Problem . 194
Background Information . 194
Solution . 195
How It Works . 196

Updating a Table with Values from Another Table . 197
Problem . 197
Background Information . 197
Solution . 198
How It Works . 199

Creating and Using Macro Variables . 199
Problem . 199
Background Information . 200
Solution . 200
How It Works . 203

Using PROC SQL Tables in Other SAS Procedures . 203
Problem . 203
Background Information . 203
Solution . 204
How It Works . 205

Overview

This section shows you examples of solutions that PROC SQL can provide. Each
example includes a statement of the problem to solve, background information that you
must know to solve the problem, the PROC SQL solution code, and an explanation of
how the solution works.

Computing a Weighted Average

Problem
You want to compute a weighted average of a column of values.

Background Information
There is one input table, called Sample, that contains the following data:

172 Chapter 6 • Practical Problem-Solving with PROC SQL

data Sample;
 do i=1 to 10;
 Value=2983*ranuni(135);
 Weight=33*rannor(579);
 if mod(i,2)=0 then Gender='M';
 else Gender='F';
 output;
 end;
 drop i;

proc print data=Sample;
 title 'Sample Data for Weighted Average';
run;

Output 6.1 Sample Input Table for Weighted Averages

Note that some of the weights are negative.

Solution
Use the following PROC SQL code to obtain weighted averages that are shown in the
following output:

proc sql;
 title 'Weighted Averages from Sample Data';
 select Gender, sum(Value*Weight)/sum(Weight) as WeightedAverage
 from (select Gender, Value,
 case
 when Weight gt 0 then Weight
 else 0
 end as Weight
 from Sample)
 group by Gender;

Computing a Weighted Average 173

Output 6.2 PROC SQL Output for Weighted Averages

How It Works
This solution uses an in-line view to create a temporary table that eliminates the negative
data values in the Weight column. The in-line view is a query that performs the
following tasks:

• selects the Gender and Value columns.

• uses a CASE expression to select the value from the Weight column. If Weight is
greater than zero, then it is retrieved. If Weight is less than zero, then a value of zero
is used in place of the Weight value.

 (select Gender, Value,
 case
 when Weight>0 then Weight
 else 0
 end as Weight
 from Sample)

The first, or outer, SELECT statement in the query, performs the following tasks:

• selects the Gender column

• constructs a weighted average from the results that were retrieved by the in-line view

The weighted average is the sum of the products of Value and Weight divided by the
sum of the Weights.

select Gender, sum(Value*Weight)/sum(Weight) as WeightedAverage

Finally, the query uses a GROUP BY clause to combine the data so that the calculation
is performed for each gender.

group by Gender;

Comparing Tables

Problem
You have two copies of a table. One of the copies has been updated. You want to see
which rows have been changed.

174 Chapter 6 • Practical Problem-Solving with PROC SQL

Background Information
There are two tables, the OLDSTAFF table and NEWSTAFF table. The NEWSTAFF
table is a copy of OLDSTAFF. Changes have been made to NEWSTAFF. You want to
find out what changes have been made.

Output 6.3 Sample Input Tables for Table Comparison

Solution
To display only the rows that have changed in the new version of the table, use the
EXCEPT set operator between two SELECT statements.

Comparing Tables 175

proc sql;
 title 'Updated Rows';
 select * from newstaff
 except
 select * from oldstaff;

Output 6.4 Rows That Have Changed

How It Works
The EXCEPT operator returns rows from the first query that are not part of the second
query. In this example, the EXCEPT operator displays only the rows that have been
added or changed in the NEWSTAFF table.

Note: Any rows that were deleted from OLDSTAFF will not appear.

Overlaying Missing Data Values

Problem
You are forming teams for a new league by analyzing the averages of bowlers when they
were members of other bowling leagues. When possible you will use each bowler's most
recent league average. However, if a bowler was not in a league last year, then you will
use the bowler's average from the prior year.

Background Information
There are two tables, LEAGUE1 and LEAGUE2, that contain bowling averages for last
year and the prior year respectively. The structure of the tables is not identical because
the data was compiled by two different secretaries. However, the tables do contain
essentially the same type of data.

data league1;
input @1 Fullname $20. @21 Bowler $4. @29 AvgScore 3.;
cards;
Alexander Delarge 4224 164
John T Chance 4425
Jack T Colton 4264
 1412 141
Andrew Shepherd 4189 185
;

176 Chapter 6 • Practical Problem-Solving with PROC SQL

data league2;
input @1 FirstName $10. @12 LastName $15. @28 AMFNo $4. @38 AvgScore 3.;
cards;
Alex Delarge 4224 156
Mickey Raymond 1412
 4264 174
Jack Chance 4425
Patrick O'Malley 4118 164
;

proc sql;
title 'Bowling Averages from League1';
select * from league1;
title 'Bowling Averages from League2';
select * from league2;

Output 6.5 Sample Input Tables for Overlaying Missing Values

Solution
The following PROC SQL code combines the information from two tables, LEAGUE1
and LEAGUE2. The program uses all the values from the LEAGUE1 table, if available,
and replaces any missing values with the corresponding values from the LEAGUE2
table. The results are shown in the following output.

proc sql;
 title "Averages from Last Year's League When Possible";

Overlaying Missing Data Values 177

 title2 "Supplemented when Available from Prior Year's League";
 select coalesce(lastyr.fullname,trim(prioryr.firstname)
 ||' '||prioryr.lastname)as Name format=$26.,
 coalesce(lastyr.bowler,prioryr.amfno)as Bowler,
 coalesce(lastyr.avgscore,prioryr.avgscore)as Average format=8.
 from league1 as lastyr full join league2 as prioryr
 on lastyr.bowler=prioryr.amfno
 order by Bowler;

Output 6.6 PROC SQL Output for Overlaying Missing Values

How It Works
This solution uses a full join to obtain all rows from LEAGUE1 as well as all rows from
LEAGUE2. The program uses the COALESCE function on each column so that,
whenever possible, there is a value for each column of a row. Using the COALESCE
function on a list of expressions that is enclosed in parentheses returns the first
nonmissing value that is found. For each row, the following code returns the AvgScore
column from LEAGUE1 for Average:

coalesce(lastyr.avgscore,prioryr.avgscore) as Average format=8.

If this value of AvgScore is missing, then COALESCE returns the AvgScore column
from LEAGUE2 for Average. If this value of AvgScore is missing, then COALESCE
returns a missing value for Average.

In the case of the Name column, the COALESCE function returns the value of FullName
from LEAGUE1 if it exists. If not, then the value is obtained from LEAGUE2 by using
both the TRIM function and concatenation operators to combine the first name and last
name columns:

trim(prioryr.firstname)||' '||prioryr.lastname

Finally, the table is ordered by Bowler. The Bowler column is the result of the
COALESCE function.

coalesce(lastyr.bowler,prioryr.amfno)as Bowler

Because the value is obtained from either table, you cannot confidently order the output
by either the value of Bowler in LEAGUE1 or the value of AMFNo in LEAGUE 2, but
only by the value that results from the COALESCE function.

178 Chapter 6 • Practical Problem-Solving with PROC SQL

Computing Percentages within Subtotals

Problem
You want to analyze answers to a survey question to determine how each state
responded. Then you want to compute the percentage of each answer that a given state
contributed. For example, what percentage of all NO responses came from North
Carolina?

Background Information
There is one input table, called SURVEY, that contains the following data (the first ten
rows are shown):

data survey;
 input State $ Answer $ @@;
 datalines;
NY YES NY YES NY YES NY YES NY YES NY YES NY NO NY NO NY NO NC YES
NC YES NC YES NC YES NC YES NC YES NC YES NC YES NC YES NC YES NC YES
NC YES NC YES NC YES NC YES NC YES NC YES NC YES NC YES NC YES NC NO
NC NO NC NO NC NO NC NO NC NO NC NO NC NO NC NO NC NO NC NO
NC NO NC NO NC NO NC NO NC NO NC NO NC NO NC NO NC NO NC NO
NC NO NC NO NC NO PA YES PA YES PA YES PA YES PA YES PA YES PA YES
PA YES PA YES PA NO PA NO PA NO PA NO PA NO PA NO PA NO PA NO
PA NO PA NO PA NO PA NO PA NO PA NO PA NO PA NO PA NO PA NO
VA YES VA YES VA YES VA YES VA YES VA YES VA YES VA YES VA YES VA YES
VA YES VA YES VA YES VA YES VA YES VA YES VA YES VA YES VA YES VA NO
VA NO VA NO VA NO VA NO VA NO VA NO VA NO VA NO VA NO VA NO
VA NO VA NO VA NO VA NO VA NO VA NO
;

proc print data=Survey(obs=10);
 title 'Sample Data for Subtotal Percentages';
run;

Computing Percentages within Subtotals 179

Output 6.7 Input Table for Computing Subtotal Percentages (Partial Output)

Solution
Use the following PROC SQL code to compute the subtotal percentages:

proc sql;
 title1 'Survey Responses';
 select survey.Answer, State, count(State) as Count,
 calculated Count/Subtotal as Percent format=percent8.2
 from survey,
 (select Answer, count(*) as Subtotal from survey
 group by Answer) as survey2
 where survey.Answer=survey2.Answer
 group by survey.Answer, State;
quit;

180 Chapter 6 • Practical Problem-Solving with PROC SQL

Output 6.8 PROC SQL Output That Computes Percentages within Subtotals

How It Works
This solution uses a subquery to calculate the subtotal counts for each answer. The code
joins the result of the subquery with the original table and then uses the calculated state
count as the numerator and the subtotal from the subquery as the denominator for the
percentage calculation.

The query uses a GROUP BY clause to combine the data so that the calculation is
performed for State within each answer.

group by survey.Answer, State;

Counting Duplicate Rows in a Table

Problem
You want to count the number of duplicate rows in a table and generate an output
column that shows how many times each row occurs.

Background Information
There is one input table, called DUPLICATES, that contains the following data:

data Duplicates;
 input LastName $ FirstName $ City $ State $;
 datalines;
Smith John Richmond Virginia
Johnson Mary Miami Florida
Smith John Richmond Virginia
Reed Sam Portland Oregon
Davis Karen Chicago Illinois
Davis Karen Chicago Illinois

Counting Duplicate Rows in a Table 181

Thompson Jennifer Houston Texas
Smith John Richmond Virginia
Johnson Mary Miami Florida
;

proc print data=Duplicates;
 title 'Sample Data for Counting Duplicates';
run;

Output 6.9 Sample Input Table for Counting Duplicates

Solution
Use the following PROC SQL code to count the duplicate rows:

proc sql;
 title 'Duplicate Rows in DUPLICATES Table';
 select *, count(*) as Count
 from Duplicates
 group by LastName, FirstName, City, State
 having count(*) > 1;

Output 6.10 PROC SQL Output for Counting Duplicates

182 Chapter 6 • Practical Problem-Solving with PROC SQL

How It Works
This solution uses a query that performs the following:

• selects all columns

• counts all rows

• groups all of the rows in the Duplicates table by matching rows

• excludes the rows that have no duplicates

Note: You must include all of the columns in your table in the GROUP BY clause to
find exact duplicates.

Expanding Hierarchical Data in a Table

Problem
You want to generate an output column that shows a hierarchical relationship among
rows in a table.

Background Information
There is one input table, called EMPLOYEES, that contains the following data:

data Employees;
 input ID $ LastName $ FirstName $ Supervisor $;
 datalines;
1001 Smith John 1002
1002 Johnson Mary None
1003 Reed Sam None
1004 Davis Karen 1003
1005 Thompson Jennifer 1002
1006 Peterson George 1002
1007 Jones Sue 1003
1008 Murphy Janice 1003
1009 Garcia Joe 1002
;

proc print data=Employees;
 title 'Sample Data for Expanding a Hierarchy';
run;

Expanding Hierarchical Data in a Table 183

Output 6.11 Sample Input Table for Expanding a Hierarchy

You want to create output that shows the full name and ID number of each employee
who has a supervisor, along with the full name and ID number of that employee's
supervisor.

Solution
Use the following PROC SQL code to expand the data:

proc sql;
 title 'Expanded Employee and Supervisor Data';
 select A.ID label="Employee ID",
 trim(A.FirstName)||' '||A.LastName label="Employee Name",
 B.ID label="Supervisor ID",
 trim(B.FirstName)||' '||B.LastName label="Supervisor Name"
 from Employees A, Employees B
 where A.Supervisor=B.ID and A.Supervisor is not missing;

184 Chapter 6 • Practical Problem-Solving with PROC SQL

Output 6.12 PROC SQL Output for Expanding a Hierarchy

How It Works
This solution uses a self-join (reflexive join) to match employees and their supervisors.
The SELECT clause assigns aliases of A and B to two instances of the same table and
retrieves data from each instance. From instance A, the SELECT clause performs the
following:

• selects the ID column and assigns it a label of Employee ID

• selects and concatenates the FirstName and LastName columns into one output
column and assigns it a label of Employee Name

From instance B, the SELECT clause performs the following:

• selects the ID column and assigns it a label of Supervisor ID

• selects and concatenates the FirstName and LastName columns into one output
column and assigns it a label of Supervisor Name

In both concatenations, the SELECT clause uses the TRIM function to remove trailing
spaces from the data in the FirstName column, and then concatenates the data with a
single space and the data in the LastName column to produce a single character value for
each full name.

trim(A.FirstName)||' '||A.LastName label="Employee Name"

When PROC SQL applies the WHERE clause, the two table instances are joined. The
WHERE clause conditions restrict the output to only those rows in table A that have a
supervisor ID that matches an employee ID in table B. This operation provides a
supervisor ID and full name for each employee in the original table, except for those
who do not have a supervisor.

 where A.Supervisor=B.ID and A.Supervisor is not missing;

Note: Although there are no missing values in the Employees table, you should check
for and exclude missing values from your results to avoid unexpected results. For
example, if there were an employee with a blank supervisor ID number and an
employee with a blank ID, then they would produce an erroneous match in the
results.

Expanding Hierarchical Data in a Table 185

Summarizing Data in Multiple Columns

Problem
You want to produce a grand total of multiple columns in a table.

Background Information
There is one input table, called SALES, that contains the following data:

data Sales;
 input Salesperson $ January February March;
 datalines;
Smith 1000 650 800
Johnson 0 900 900
Reed 1200 700 850
Davis 1050 900 1000
Thompson 750 850 1000
Peterson 900 600 500
Jones 800 900 1200
Murphy 700 800 700
Garcia 400 1200 1150
;

proc print data=Sales;
 title 'Sample Data for Summarizing Data from Multiple Columns';
run;

186 Chapter 6 • Practical Problem-Solving with PROC SQL

Output 6.13 Sample Input Table for Summarizing Data from Multiple Columns

You want to create output that shows the total sales for each month and the total sales for
all three months.

Solution
Use the following PROC SQL code to produce the monthly totals and grand total:

proc sql;
 title 'Total First Quarter Sales';
 select sum(January) as JanTotal,
 sum(February) as FebTotal,
 sum(March) as MarTotal,
 sum(calculated JanTotal, calculated FebTotal,
 calculated MarTotal) as GrandTotal format=dollar10.
 from Sales;

Output 6.14 PROC SQL Output for Summarizing Data from Multiple Columns

How It Works
Recall that when you specify one column as the argument to an aggregate function, the
values in that column are calculated. When you specify multiple columns, the values in
each row of the columns are calculated. This solution uses the SUM function to calculate

Summarizing Data in Multiple Columns 187

the sum of each month's sales, and then uses the SUM function a second time to total the
monthly sums into one grand total.

sum(calculated JanTotal, calculated FebTotal,
 calculated MarTotal) as GrandTotal format=dollar10.

An alternative way to code the grand total calculation is to use nested functions:

sum(sum(January), sum(February), sum(March))
 as GrandTotal format=dollar10.

Creating a Summary Report

Problem
You have a table that contains detailed sales information. You want to produce a
summary report from the detail table.

Background Information
There is one input table, called SALES, that contains detailed sales information. There is
one record for each sale for the first quarter that shows the site, product, invoice number,
invoice amount, and invoice date.

data sales;
 input Site $ Product $ Invoice $ InvoiceAmount InvoiceDate $;
 datalines;
V1009 VID010 V7679 598.5 980126
V1019 VID010 V7688 598.5 980126
V1032 VID005 V7771 1070 980309
V1043 VID014 V7780 1070 980309
V421 VID003 V7831 2000 980330
V421 VID010 V7832 750 980330
V570 VID003 V7762 2000 980302
V659 VID003 V7730 1000 980223
V783 VID003 V7815 750 980323
V985 VID003 V7733 2500 980223
V966 VID001 V5020 1167 980215
V98 VID003 V7750 2000 980223
;

proc sql;
 title 'Sample Data to Create Summary Sales Report';
 select * from sales;
quit;

188 Chapter 6 • Practical Problem-Solving with PROC SQL

Output 6.15 Sample Input Table for Creating a Summary Report

You want to use this table to create a summary report that shows the sales for each
product for each month of the quarter.

Solution
Use the following PROC SQL code to create a column for each month of the quarter,
and use the summary function SUM in combination with the GROUP BY statement to
accumulate the monthly sales for each product:

proc sql;
 title 'First Quarter Sales by Product';
 select Product,
 sum(Jan) label='Jan',
 sum(Feb) label='Feb',
 sum(Mar) label='Mar'
 from (select Product,
 case
 when substr(InvoiceDate,3,2)='01' then
 InvoiceAmount end as Jan,
 case
 when substr(InvoiceDate,3,2)='02' then
 InvoiceAmount end as Feb,
 case
 when substr(InvoiceDate,3,2)='03' then
 InvoiceAmount end as Mar
 from work.sales)
 group by Product;

Creating a Summary Report 189

Output 6.16 PROC SQL Output for a Summary Report

Note: Missing values in the matrix indicate that no sales occurred for that given product
in that month.

How It Works
This solution uses an in-line view to create three temporary columns, Jan, Feb, and Mar,
based on the month part of the invoice date column. The in-line view is a query that
performs the following:

• selects the product column

• uses a CASE expression to assign the value of invoice amount to one of three
columns, Jan, Feb, or Mar, depending on the value of the month part of the invoice
date column

case
 when substr(InvoiceDate,3,2)='01' then
 InvoiceAmount end as Jan,
case
 when substr(InvoiceSate,3,2)='02' then
 InvoiceAmount end as Feb,
case
 when substr(InvoiceDate,3,2)='03' then
 InvoiceAmount end as Mar

The first, or outer, SELECT statement in the query performs the following:

• selects the product

• uses the summary function SUM to accumulate the Jan, Feb, and Mar amounts

• uses the GROUP BY statement to produce a line in the table for each product

Notice that dates are stored in the input table as strings. If the dates were stored as SAS
dates, then the CASE expression could be written as follows:

case
 when month(InvoiceDate)=1 then
 InvoiceAmount end as Jan,
case
 when month(InvoiceDate)=2 then
 InvoiceAmount end as Feb,
case

190 Chapter 6 • Practical Problem-Solving with PROC SQL

 when month(InvoiceDate)=3 then
 InvoiceAmount end as Mar

Creating a Customized Sort Order

Problem
You want to sort data in a logical, but not alphabetical, sequence.

Background Information
There is one input table, called CHORES, that contains the following data:

data chores;
 input Project $ Hours Season $;
 datalines;
weeding 48 summer
pruning 12 winter
mowing 36 summer
mulching 17 fall
raking 24 fall
raking 16 spring
planting 8 spring
planting 8 fall
sweeping 3 winter
edging 16 summer
seeding 6 spring
tilling 12 spring
aerating 6 spring
feeding 7 summer
rolling 4 winter
;

proc sql;
title 'Garden Chores';
select * from chores;
quit;

Creating a Customized Sort Order 191

Output 6.17 Sample Input Data for a Customized Sort

You want to reorder this chore list so that all the chores are grouped by season, starting
with spring and progressing through the year. Simply ordering by Season makes the list
appear in alphabetical sequence: fall, spring, summer, winter.

Solution
Use the following PROC SQL code to create a new column, Sorter, that will have values
of 1 through 4 for the seasons spring through winter. Use the new column to order the
query, but do not select it to appear:

 proc sql;
 title 'Garden Chores by Season in Logical Order';
 select Project, Hours, Season
 from (select Project, Hours, Season,
 case
 when Season = 'spring' then 1
 when Season = 'summer' then 2
 when Season = 'fall' then 3
 when Season = 'winter' then 4
 else .
 end as Sorter
 from chores)
 order by Sorter;

192 Chapter 6 • Practical Problem-Solving with PROC SQL

Output 6.18 PROC SQL Output for a Customized Sort Sequence

How It Works
This solution uses an in-line view to create a temporary column that can be used as an
ORDER BY column. The in-line view is a query that performs the following:

• selects the Project, Hours, and Season columns

• uses a CASE expression to remap the seasons to the new column Sorter: spring to 1,
summer to 2, fall to 3, and winter to 4

 (select project, hours, season,
 case
 when season = 'spring' then 1
 when season = 'summer' then 2
 when season = 'fall' then 3
 when season = 'winter' then 4
 else .
 end as sorter
 from chores)

The first, or outer, SELECT statement in the query performs the following:

• selects the Project, Hours, and Season columns

Creating a Customized Sort Order 193

• orders rows by the values that were assigned to the seasons in the Sorter column that
was created with the in-line view

Notice that the Sorter column is not included in the SELECT statement. That causes a
note to be written to the log indicating that you have used a column in an ORDER BY
statement that does not appear in the SELECT statement. In this case, that is exactly
what you wanted to do.

Conditionally Updating a Table

Problem
You want to update values in a column of a table, based on the values of several other
columns in the table.

Background Information
There is one table, called INCENTIVES, that contains information about sales data.
There is one record for each salesperson that includes a department code, a base pay rate,
and sales of two products, gadgets and whatnots.

data incentives;
 input @1 Name $18. @20 Department $2. Payrate
 Gadgets Whatnots;
 datalines;
Lao Che M2 8.00 10193 1105
Jack Colton U2 6.00 9994 2710
Mickey Raymond M1 12.00 6103 1930
Dean Proffit M2 11.00 3000 1999
Antoinette Lily E1 20.00 2203 4610
Sydney Wade E2 15.00 4205 3010
Alan Traherne U2 4.00 5020 3000
Elizabeth Bennett E1 16.00 17003 3003
;

proc sql;
 title 'Sales Data for Incentives Program';
 select * from incentives;
quit;

194 Chapter 6 • Practical Problem-Solving with PROC SQL

Output 6.19 Sample Input Data to Conditionally Change a Table

You want to update the table by increasing each salesperson's payrate (based on the total
sales of gadgets and whatnots) and taking into consideration some factors that are based
on department code.

Specifically, anyone who sells over 10,000 gadgets merits an extra $5 per hour. Anyone
selling between 5,000 and 10,000 gadgets also merits an incentive pay, but E
Department salespersons are expected to be better sellers than those in the other
departments, so their gadget sales incentive is $2 per hour compared to $3 per hour for
those in other departments. Good sales of whatnots also entitle sellers to added incentive
pay. The algorithm for whatnot sales is that the top level (level 1 in each department)
salespersons merit an extra $.50 per hour for whatnot sales over 2,000, and level 2
salespersons merit an extra $1 per hour for sales over 2,000.

Solution
Use the following PROC SQL code to create a new value for the Payrate column.
Actually Payrate is updated twice for each row, once based on sales of gadgets, and
again based on sales of whatnots:

proc sql;
 update incentives
 set payrate = case
 when gadgets > 10000 then
 payrate + 5.00
 when gadgets > 5000 then
 case
 when department in ('E1', 'E2') then
 payrate + 2.00
 else payrate + 3.00
 end
 else payrate
 end;
 update incentives
 set payrate = case
 when whatnots > 2000 then

Conditionally Updating a Table 195

 case
 when department in ('E2', 'M2', 'U2') then
 payrate + 1.00
 else payrate + 0.50
 end
 else payrate
 end;
 title 'Adjusted Payrates Based on Sales of Gadgets and Whatnots';
 select * from incentives;

Output 6.20 PROC SQL Output for Conditionally Updating a Table

How It Works
This solution performs consecutive updates to the payrate column of the incentive table.
The first update uses a nested case expression, first determining a bracket that is based
on the amount of gadget sales: greater than 10,000 calls for an incentive of $5, between
5,000 and 10,000 requires an additional comparison. That is accomplished with a nested
case expression that checks department code to choose between a $2 and $3 incentive.

 update incentives
 set payrate = case
 when gadgets > 10000 then
 payrate + 5.00
 when gadgets > 5000 then
 case
 when department in ('E1', 'E2') then
 payrate + 2.00
 else payrate + 3.00
 end
 else payrate
 end;

196 Chapter 6 • Practical Problem-Solving with PROC SQL

The second update is similar, though simpler. All sales of whatnots over 2,000 merit an
incentive, either $.50 or $1 depending on the department level, that again is
accomplished by means of a nested case expression.

update incentives
 set payrate = case
 when whatnots > 2000 then
 case
 when department in ('E2', 'M2', 'U2') then
 payrate + 1.00
 else payrate + 0.50
 end
 else payrate
 end;

Updating a Table with Values from Another Table

Problem
You want to update the SQL.UNITEDSTATES table with updated population data.

Background Information
The SQL.NEWPOP table contains updated population data for some of the U.S. states.

libname sql 'SAS-library';

proc sql;
title 'Updated U.S. Population Data';
select state, population format=comma10. label='Population' from sql.newpop;

Updating a Table with Values from Another Table 197

Output 6.21 Table with Updated Population Data

Solution
Use the following PROC SQL code to update the population information for each state
in the SQL.UNITEDSTATES table:

proc sql;
title 'UNITEDSTATES';
update sql.unitedstates as u
 set population=(select population from sql.newpop as n
 where u.name=n.state)
 where u.name in (select state from sql.newpop);
select Name format=$17., Capital format=$15.,
 Population, Area, Continent format=$13., Statehood format=date9.
 from sql.unitedstates;

/* use this code to generate output so you don't
 overwrite the sql.unitedstates table */
options ls=84;
proc sql outobs=10;
title 'UNITEDSTATES';
create table work.unitedstates as
 select * from sql.unitedstates;
update work.unitedstates as u
 set population=(select population from sql.newpop as n

198 Chapter 6 • Practical Problem-Solving with PROC SQL

 where u.name=n.state)
 where u.name in (select state from sql.newpop);
 select Name format=$17., Capital format=$15.,
 Population, Area, Continent format=$13., Statehood format=date9.
 from work.unitedstates
;

Output 6.22 SQL.UNITEDSTATES with Updated Population Data (Partial Output)

How It Works
The UPDATE statement updates values in the SQL.UNITEDSTATES table (here with
the alias U). For each row in the SQL.UNITEDSTATES table, the in-line view in the
SET clause returns a single value. For rows that have a corresponding row in
SQL.NEWPOP, this value is the value of the Population column from SQL.NEWPOP.
For rows that do not have a corresponding row in SQL.NEWPOP, this value is missing.
In both cases, the returned value is assigned to the Population column.

The WHERE clause ensures that only the rows in SQL.UNITEDSTATES that have a
corresponding row in SQL.NEWPOP are updated, by checking each value of Name
against the list of state names that is returned from the in-line view. Without the
WHERE clause, rows that do not have a corresponding row in SQL.NEWPOP would
have their Population values updated to missing.

Creating and Using Macro Variables

Problem
You want to create a separate data set for each unique value of a column.

Creating and Using Macro Variables 199

Background Information
The SQL.FEATURES data set contains information about various geographical features
around the world.

libname sql 'C:\Public\examples';

proc sql outobs=10;
title 'FEATURES';
 select Name format=$15., Type,Location format =$15.,Area,
 Height, Depth, Length
 from sql.features;

Output 6.23 FEATURES (Partial Output)

Solution
To create a separate data set for each type of feature, you could go through the data set
manually to determine all the unique values of Type, and then write a separate DATA
step for each type (or a single DATA step with multiple OUTPUT statements). This
approach is labor-intensive, error-prone, and impractical for large data sets. The
following PROC SQL code counts the unique values of Type and puts each value in a
separate macro variable. The SAS macro that follows the PROC SQL code uses these
macro variables to create a SAS data set for each value. You do not need to know
beforehand how many unique values there are or what the values are.

proc sql noprint;
 select count(distinct type)
 into :n
 from sql.features;
 select distinct type

200 Chapter 6 • Practical Problem-Solving with PROC SQL

 into :type1 - :type%left(&n)
 from sql.features;
quit;

%macro makeds;
 %do i=1 %to &n;
 data &&type&i (drop=type);
 set sql.features;
 if type="&&type&i";
 run;
 %end;
%mend makeds;
%makeds;

Creating and Using Macro Variables 201

Log 6.1 Log

240 proc sql noprint;

241 select count(distinct type)

242 into :n

243 from sql.features;

244 select distinct type

245 into :type1 - :type%left(&n)

246 from sql.features;

247 quit;

NOTE: PROCEDURE SQL used (Total process time):

 real time 0.04 seconds

 cpu time 0.03 seconds

248

249 %macro makeds;

250 %do i=1 %to &n;

251 data &&type&i (drop=type);

252 set sql.features;

253 if type="&&type&i";

254 run;

255 %end;

256 %mend makeds;

257 %makeds;

NOTE: There were 74 observations read from the data set SQL.FEATURES.

NOTE: The data set WORK.DESERT has 7 observations and 6 variables.

NOTE: DATA statement used (Total process time):

 real time 1.14 seconds

 cpu time 0.41 seconds

NOTE: There were 74 observations read from the data set SQL.FEATURES.

NOTE: The data set WORK.ISLAND has 6 observations and 6 variables.

NOTE: DATA statement used (Total process time):

 real time 0.02 seconds

 cpu time 0.00 seconds

NOTE: There were 74 observations read from the data set SQL.FEATURES.

NOTE: The data set WORK.LAKE has 10 observations and 6 variables.

NOTE: DATA statement used (Total process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

NOTE: There were 74 observations read from the data set SQL.FEATURES.

NOTE: The data set WORK.MOUNTAIN has 18 observations and 6 variables.

NOTE: DATA statement used (Total process time):

 real time 0.02 seconds

 cpu time 0.01 seconds

NOTE: There were 74 observations read from the data set SQL.FEATURES.

NOTE: The data set WORK.OCEAN has 4 observations and 6 variables.

NOTE: DATA statement used (Total process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

NOTE: There were 74 observations read from the data set SQL.FEATURES.

NOTE: The data set WORK.RIVER has 12 observations and 6 variables.

NOTE: DATA statement used (Total process time):

 real time 0.02 seconds

 cpu time 0.02 seconds

202 Chapter 6 • Practical Problem-Solving with PROC SQL

NOTE: There were 74 observations read from the data set SQL.FEATURES.

NOTE: The data set WORK.SEA has 13 observations and 6 variables.

NOTE: DATA statement used (Total process time):

 real time 0.03 seconds

 cpu time 0.02 seconds

NOTE: There were 74 observations read from the data set SQL.FEATURES.

NOTE: The data set WORK.WATERFALL has 4 observations and 6 variables.

NOTE: DATA statement used (Total process time):

 real time 0.02 seconds

 cpu time 0.02 seconds

How It Works
This solution uses the INTO clause to store values in macro variables. The first SELECT
statement counts the unique variables and stores the result in macro variable N. The
second SELECT statement creates a range of macro variables, one for each unique
value, and stores each unique value in one of the macro variables. Note the use of the
%LEFT function, which trims leading blanks from the value of the N macro variable.

The MAKEDS macro uses all the macro variables that were created in the PROC SQL
step. The macro uses a %DO loop to execute a DATA step for each unique value,
writing rows that contain a given value of Type to a SAS data set of the same name. The
Type variable is dropped from the output data sets.

For more information about SAS macros, see SAS Macro Language: Reference.

Using PROC SQL Tables in Other SAS
Procedures

Problem
You want to show the average high temperatures in degrees Celsius for European
countries on a map.

Background Information
The SQL.WORLDTEMPS table has average high and low temperatures for various
cities around the world.

proc sql outobs=10;
title 'WORLDTEMPS';
 select City, Country,avghigh, avglow
 from sql.worldtemps
;

Using PROC SQL Tables in Other SAS Procedures 203

Output 6.24 WORLDTEMPS (Partial Output)

Solution
Use the following PROC SQL and PROC GMAP code to produce the map. You must
license SAS/GRAPH software to use PROC GMAP.

options fmtsearch=(sashelp.mapfmts);

proc sql;
 create table extremetemps as
 select country, round((mean(avgHigh)-32)/1.8) as High,
 input(put(country,$glcsmn.), best.) as ID
 from sql.worldtemps
 where calculated id is not missing and country in
 (select name from sql.countries where continent='Europe')
 group by country;
quit;

proc gmap map=maps.europe data=extremetemps all;
 id id;
 block high / levels=3;
 title 'Average High Temperatures for European Countries';
 title2 'Degrees Celsius'
run;
quit;

204 Chapter 6 • Practical Problem-Solving with PROC SQL

Output 6.25 PROC GMAP Output

How It Works
The SAS system option FMTSEARCH= tells SAS to search in the
SASHELP.MAPFMTS catalog for map-related formats. In the PROC SQL step, a
temporary table is created with Country, High, and ID columns. The calculation
round((mean(avgHigh)-32)/1.8) does the following:

1. For countries that are represented by more than one city, the mean of the cities'
average high temperatures is used for that country.

2. That value is converted from degrees Fahrenheit to degrees Celsius.

3. The result is rounded to the nearest degree.

The PUT function uses the $GLCSMN. format to convert the country name to a country
code. The INPUT function converts this country code, which is returned by the PUT
function as a character value, into a numeric value that can be understood by the GMAP
procedure. See SAS Functions and CALL Routines: Reference for details about the PUT
and INPUT functions.

The WHERE clause limits the output to European countries by checking the value of the
Country column against the list of European countries that is returned by the in-line
view. Also, rows with missing values of ID are eliminated. Missing ID values could be
produced if the $GLCSMN. format does not recognize the country name.

The GROUP BY clause is required so that the mean temperature can be calculated for
each country rather than for the entire table.

Using PROC SQL Tables in Other SAS Procedures 205

The PROC GMAP step uses the ID variable to identify each country and places a block
representing the High value on each country on the map. The ALL option ensures that
countries (such as the United Kingdom in this example) that do not have High values are
also drawn on the map. In the BLOCK statement, the LEVELS= option specifies how
many response levels are used in the graph. For more information about the GMAP
procedure, see SAS/GRAPH: Reference.

206 Chapter 6 • Practical Problem-Solving with PROC SQL

Part 2

SQL Procedure Reference

Chapter 7
SQL Procedure . 209

Chapter 8
SQL SELECT Statement Clauses . 291

Chapter 9
SQL Procedure Components . 305

207

208

Chapter 7

SQL Procedure

Overview . 210
What Is the SQL Procedure? . 210
What Are PROC SQL Tables? . 210
What Are Views? . 211
SQL Procedure Coding Conventions . 211

Syntax: SQL Procedure . 212
PROC SQL Statement . 215
ALTER TABLE Statement . 224
CONNECT Statement . 227
CREATE INDEX Statement . 228
CREATE TABLE Statement . 230
CREATE VIEW Statement . 234
DELETE Statement . 236
DESCRIBE Statement . 237
DISCONNECT Statement . 238
DROP Statement . 239
EXECUTE Statement . 240
INSERT Statement . 241
RESET Statement . 242
SELECT Statement . 243
UPDATE Statement . 243
VALIDATE Statement . 244

Examples: SQL Procedure . 245
Example 1: Creating a Table and Inserting Data into It . 245
Example 2: Creating a Table from a Query's Result . 247
Example 3: Updating Data in a PROC SQL Table . 249
Example 4: Joining Two Tables . 251
Example 5: Combining Two Tables . 254
Example 6: Reporting from DICTIONARY Tables . 257
Example 7: Performing an Outer Join . 259
Example 8: Creating a View from a Query's Result . 265
Example 9: Joining Three Tables . 268
Example 10: Querying an In-Line View . 272
Example 11: Retrieving Values with the SOUNDS-LIKE Operator 274
Example 12: Joining Two Tables and Calculating a New Value 276
Example 13: Producing All the Possible Combinations of the

Values in a Column . 279
Example 14: Matching Case Rows and Control Rows . 285
Example 15: Counting Missing Values with a SAS Macro 288

209

Overview

What Is the SQL Procedure?
The SQL procedure implements Structured Query Language (SQL) for SAS. SQL is a
standardized, widely used language that retrieves data from and updates data in tables
and the views that are based on those tables.

The SAS SQL procedure enables you to

• retrieve and manipulate data that is stored in tables or views.

• create tables, views, and indexes on columns in tables.

• create SAS macro variables that contain values from rows in a query's result.

• add or modify the data values in a table's columns or insert and delete rows. You can
also modify the table itself by adding, modifying, or dropping columns.

• send DBMS-specific SQL statements to a database management system (DBMS)
and retrieve DBMS data.

The following figure summarizes the variety of source material that you can use with
PROC SQL and what the procedure can produce.

Figure 7.1 PROC SQL Input and Output

PROC SQL tables

(SAS data files)

SAS data views

(PROC SQL views)

(DATA step views)

(SAS/ACCESS views)

DBMS tables

DBMS tables

reports

PROC SQL views

PROC

SQL

PROC SQL tables

(SAS data files)

macro variables

What Are PROC SQL Tables?
A PROC SQL table is synonymous with a SAS data file and has a member type of
DATA. You can use PROC SQL tables as input into DATA steps and procedures.

You create PROC SQL tables from SAS data files, from SAS views, or from DBMS
tables by using PROC SQL's pass-through facility or the SAS/ACCESS LIBNAME
statement. The pass-through facility is described in “Connecting to a DBMS by Using
the SQL Procedure Pass-Through Facility” on page 166. The SAS/ACCESS LIBNAME
statement is described in “Connecting to a DBMS by Using the LIBNAME Statement”
on page 163.

In PROC SQL terminology, a row in a table is the same as an observation in a SAS data
file. A column is the same as a variable.

210 Chapter 7 • SQL Procedure

What Are Views?
A SAS view defines a virtual data set that is named and stored for later use. A view
contains no data but describes or defines data that is stored elsewhere. There are three
types of SAS views:

• PROC SQL views

• SAS/ACCESS views

• DATA step views.

You can refer to views in queries as if they were tables. The view derives its data from
the tables or views that are listed in its FROM clause. The data that is accessed by a view
is a subset or superset of the data that is in its underlying tables or views.

A PROC SQL view is a SAS data set of type VIEW that is created by PROC SQL. A
PROC SQL view contains no data. It is a stored query expression that reads data values
from its underlying files, which can include SAS data files, SAS/ACCESS views, DATA
step views, other PROC SQL views, or DBMS data. When executed, a PROC SQL
view's output can be a subset or superset of one or more underlying files.

SAS/ACCESS views and DATA step views are similar to PROC SQL views in that they
are both stored programs of member type VIEW. SAS/ACCESS views describe data in
DBMS tables from other software vendors. DATA step views are stored DATA step
programs.

Note: Starting in SAS System 9, PROC SQL views, the pass-through facility, and the
SAS/ACCESS LIBNAME statement are the preferred ways to access relational
DBMS data; SAS/ACCESS views are no longer recommended. You can convert
existing SAS/ACCESS views to PROC SQL views by using the CV2VIEW
procedure. For more information, see Chapter 33, “CV2VIEW Procedure” in
SAS/ACCESS for Relational Databases: Reference.

You can update data through a PROC SQL or SAS/ACCESS view with certain
restrictions. See “Updating PROC SQL and SAS/ACCESS Views” on page 168.

You can use all types of views as input to DATA steps and procedures.

Note: In this chapter, the term view collectively refers to PROC SQL views, DATA step
views, and SAS/ACCESS views, unless otherwise noted.

Note: When the contents of an SQL view are processed (by a DATA step or a
procedure), the referenced data set must be opened to retrieve information about the
variables that is not stored in the view. If that data set has a libref associated with it
that is not defined in the current SAS code, then an error will result. You can avoid
this error by specifying a USING clause in the CREATE VIEW statement. See
“CREATE VIEW Statement” on page 234 for details.

Note: When you process PROC SQL views between a client and a server, getting the
correct results depends on the compatibility between the client and server
architecture. For more information, see “Accessing a SAS View” in Chapter 17 of
SAS/CONNECT User's Guide.

SQL Procedure Coding Conventions
Because PROC SQL implements Structured Query Language, it works somewhat
differently from other Base SAS procedures, as described here:

Overview 211

• When a PROC SQL statement is executed, PROC SQL continues to run until a
QUIT statement, a DATA step, or another SAS procedure is executed. Therefore,
you do not need to repeat the PROC SQL statement with each SQL statement. You
need to repeat the PROC SQL statement only if you execute a QUIT statement, a
DATA step, or another SAS procedure between SQL statements.

• SQL procedure statements are divided into clauses. For example, the most basic
SELECT statement contains the SELECT and FROM clauses. Items within clauses
are separated with commas in SQL, not with blanks as in other SAS code. For
example, if you list three columns in the SELECT clause, then the columns are
separated with commas.

• The SELECT statement, which is used to retrieve data, also automatically writes the
output data to the Output window unless you specify the NOPRINT option in the
PROC SQL statement. Therefore, you can display your output or send it to a list file
without specifying the PRINT procedure.

• The ORDER BY clause sorts data by columns. In addition, tables do not need to be
presorted by a variable for use with PROC SQL. Therefore, you do not need to use
the SORT procedure with your PROC SQL programs.

• A PROC SQL statement runs when you submit it; you do not have to specify a RUN
statement. If you follow a PROC SQL statement with a RUN statement, then SAS
ignores the RUN statement and submits the statements as usual.

Syntax: SQL Procedure
Tips: Supports the Output Delivery System. For more information, see Chapter 3, “Output

Delivery System: Basic Concepts,” in SAS Output Delivery System: User's Guide.
You can use any global statements. For more information, see Chapter 2,
“Fundamental Concepts for Using Base SAS Procedures,” in Base SAS Procedures
Guide.
You can use data set options any time a table name or view name is specified. For
more information, see “Using SAS Data Set Options with PROC SQL” on page 151..
Regular type indicates the name of a component that is described in Chapter 9,
“SQL Procedure Components,” on page 305 view-name indicates a SAS view of
any type.

212 Chapter 7 • SQL Procedure

PROC SQL <option(s)>;
ALTER TABLE table-name

<ADD<CONSTRAINT>constraint-clause<, … constraint-clause>>
<ADD column-definition<, … column-definition>>
<DROP CONSTRAINTconstraint-name<, … constraint-name>>
<DROPcolumn<, … column>>
<DROP FOREIGN KEYconstraint-name>
<DROP PRIMARY KEY>
<MODIFY column-definition<, … column-definition>>

;
CREATE <UNIQUE> INDEX index-name

ON table-name (column <, … column>);
CREATE TABLE table-name

(column-specification<, …column-specification | constraint-specification>)
;

CREATE TABLE table-name LIKE table-name2;
CREATE TABLE table-name AS query-expression

<ORDER BYorder-by-item<, … order-by-item>>;
CREATE VIEW proc-sql-view AS query-expression

<ORDER BYorder-by-item<, … order-by-item>>
<USINGlibname-clause<, … libname-clause>> ;

DELETE
FROM table-name|proc-sql-view |sas/access-view <AS alias>

<WHERE sql-expression>;
DESCRIBE TABLE table-name <, … table-name>;
DESCRIBE VIEW proc-sql-view <, … proc-sql-view>;
DESCRIBE TABLE CONSTRAINTS table-name <, … table-name>;
DROP INDEX index-name <, … index-name>

FROM table-name;
DROP TABLE table-name <, … table-name>;
DROP VIEW view-name <, … view-name>;
INSERT INTO table-name|sas/access-view|proc-sql-view <(column<, … column>)>

SET column=sql-expression
<, … column=sql-expression>

<SETcolumn=sql-expression<, … column=sql-expression>>;
INSERT INTO table-name|sas/access-view|proc-sql-view <(column<, … column>)>

VALUES (value <, … value>)
<… VALUES (value<, … value>)>;

INSERT INTO table-name|sas/access-view|proc-sql-view
<(column<, …column>)> query-expression;

RESET <option(s)>;

Syntax: SQL Procedure 213

SELECT <DISTINCT> object-item <, …object-item>
<INTOmacro-variable-specification<, … macro-variable-specification>>
FROM from-list
<WHERE sql-expression>
<GROUP BYgroup-by-item<, … group-by-item>>
<HAVING sql-expression>
<ORDER BYorder-by-item<, … order-by-item>>;

UPDATE table-name|sas/access-view|proc-sql-view <ASalias>
SET column=sql-expression

<, … column=sql-expression>
<SETcolumn=sql-expression<, … column=sql-expression>>
<WHERE sql-expression>;

VALIDATE query-expression;
To connect to a DBMS and send it a DBMS-specific nonquery SQL statement, use this form:
PROC SQL;

CONNECT TO dbms-name <AS alias>
<(connect-statement-argument-1=value<… connect-statement-argument-n=value>)>
<(database-connection-argument-1=value<… database-connection-argument-n=value>)>;

EXECUTE (dbms-SQL-statement)
BY dbms-name|alias;

<DISCONNECT FROMdbms-name|alias;>
<QUIT;>
To connect to a DBMS and query the DBMS data, use this form:
PROC SQL;

CONNECT TO dbms-name <AS alias>
<(connect-statement-argument-1=value<… connect-statement-argument-n=value>)>
<(database-connection-argument-1=value<… database-connection-argument-n=value>)>;

SELECT column-list
FROM CONNECTION TO dbms-name|alias

(dbms-query)
optional PROC SQL clauses;

<DISCONNECT FROMdbms-name|alias;>
<QUIT;>

Statement Task

“PROC SQL
Statement”

Create, maintain, retrieve, and update data in tables and views that are
based on these tables

“ALTER TABLE
Statement”

Modify, add, or drop columns

“CONNECT
Statement”

Establish a connection with a DBMS

“CREATE INDEX
Statement”

Create an index on a column

“CREATE TABLE
Statement”

Create a PROC SQL table

214 Chapter 7 • SQL Procedure

Statement Task

“CREATE VIEW
Statement”

Create a PROC SQL view

“DELETE Statement” Delete rows

“DESCRIBE
Statement”

Display a definition of a table or view

“DISCONNECT
Statement”

Terminate the connection with a DBMS

“DROP Statement” Delete tables, views, or indexes

“EXECUTE
Statement”

Send a DBMS-specific nonquery SQL statement to a DBMS

“INSERT Statement” Add rows

“RESET Statement” Reset options that affect the procedure environment without restarting
the procedure

“SELECT Statement” Select and execute rows

“UPDATE Statement” Modify values

“VALIDATE
Statement”

Verify the accuracy of your query

PROC SQL Statement
PROC SQL Statement

Syntax
PROC SQL <option(s)>;

Summary of Optional Arguments

Control execution
CONSTDATETIME|NOCONSTDATETIME
DQUOTE=ANSI|SAS
ERRORSTOP|NOERRORSTOP
EXEC|NOEXEC
EXITCODE
INOBS=n
IPASSTHRU|NOIPASSTHRU
LOOPS=n
NOCONSTDATETIME

PROC SQL Statement 215

NOERRORSTOP
NOEXEC
NOIPASSTHRU
NOPROMPT
NOREMERGE
NOSTIMER
NOTHREADS
OUTOBS=n
PROMPT|NOPROMPT
REDUCEPUT=ALL|NONE|DBMS|BASE
REDUCEPUTOBS=n
REDUCEPUTVALUES=n
REMERGE|NOREMERGE
STIMER|NOSTIMER
STOPONTRUNC
THREADS|NOTHREADS
UNDO_POLICY=NONE|OPTIONAL|REQUIRED

Control output
BUFFERSIZE=n|nK|nM|nG
DOUBLE|NODOUBLE
FEEDBACK|NOFEEDBACK
FLOW<=n <m>>|NOFLOW
NODOUBLE
NOFEEDBACK
NOFLOW
NONUMBER
NOPRINT
NOSORTMSG
NOWARNRECURS
NUMBER|NONUMBER
PRINT|NOPRINT
SORTMSG|NOSORTMSG
SORTSEQ=sort-table
WARNRECURS|NOWARNRECURS

Optional Arguments
BUFFERSIZE=n|nK|nM|nG

specifies the internal transient buffer page size for the PROC SQL paged memory
subsystem. PROC SQL uses this subsystem to help implement operations such as
joins, aggregations, and intersections. The output is in multiples of 1 (bytes), 1024
(kilobytes), 1,048,576 (megabytes), or 1,073,741,824 (gigabytes). For example, a
value of 65536 specifies a page size of 65536 bytes, and a value of 64k specifies a
page size of 65536 bytes.

BUFFERSIZE can also be specified in a RESET statement for use in particular
queries.

216 Chapter 7 • SQL Procedure

Default: 0, which causes SAS to use the minimum optimal page size for the
operating environment.

CONSTDATETIME|NOCONSTDATETIME
specifies whether the SQL procedure replaces references to the DATE, TIME,
DATETIME, and TODAY functions in a query with their equivalent constant values
before the query executes. Computing these values once ensures consistency of
results when the functions are used multiple times in a query or when the query
executes the functions close to a date or time boundary.

When the NOCONSTDATETIME option is set, PROC SQL evaluates these
functions in a query each time it processes an observation.
Default: CONSTDATETIME
Interaction: If both the CONSTDATETIME option and the REDUCEPUT= option

on page 220 are specified, PROC SQL replaces the DATE, TIME, DATETIME,
and TODAY functions with their respective values in order to determine the PUT
function value before the query executes.

Tip: Alternatively, you can set the SQLCONSTDATETIME system option. The
value that is specified in the SQLCONSTDATETIME system option is in effect
for all SQL procedure statements, unless the PROC SQL CONSTDATETIME
option is set. The value of the CONSTDATETIME option takes precedence over
the SQLCONSTDATETIME system option. The RESET statement can also be
used to set or reset the CONSTDATETIME option. However, changing the value
of the CONSTDATETIME option does not change the value of the
SQLCONSTDATETIME system option. For more information, see the
“SQLCONSTDATETIME System Option” on page 361.

DOUBLE|NODOUBLE
double-spaces the report.
Default: NODOUBLE
Example: “Example 5: Combining Two Tables” on page 254

DQUOTE=ANSI|SAS
specifies whether PROC SQL treats values within double quotation marks (" ") as
variables or strings. With DQUOTE=ANSI, PROC SQL treats a quoted value as a
variable. This feature enables you to use the following as table names, column
names, or aliases:

• reserved words such as AS, JOIN, GROUP, and so on

• DBMS names and other names that are not normally permissible in SAS.

The quoted value can contain any character.

With DQUOTE=SAS, values within double quotation marks are treated as strings.
Default: SAS

ERRORSTOP|NOERRORSTOP
specifies whether PROC SQL stops executing if it encounters an error. In a batch or
noninteractive session, ERRORSTOP instructs PROC SQL to stop executing the
statements but to continue checking the syntax after it has encountered an error.

NOERRORSTOP instructs PROC SQL to execute the statements and to continue
checking the syntax after an error occurs.
Default: NOERRORSTOP in an interactive SAS session; ERRORSTOP in a batch

or noninteractive session
Interaction: This option is useful only when the EXEC option is in effect.
Tips:

PROC SQL Statement 217

ERRORSTOP has an effect only when SAS is running in the batch or
noninteractive execution mode.
NOERRORSTOP is useful if you want a batch job to continue executing SQL
procedure statements after an error is encountered.

EXEC|NOEXEC
specifies whether a statement should be executed after its syntax is checked for
accuracy.
Default: EXEC
Tip: NOEXEC is useful if you want to check the syntax of your SQL statements

without executing the statements.
See: ERRORSTOP on page 217

EXITCODE
specifies whether PROC SQL clears an error code for any SQL statement. Error
codes are assigned to the SQLEXITCODE macro variable.
Default: 0
Tip: The exit code can be reset to the default value between PROC SQL statements

with the “RESET Statement” on page 242.
See: “Using the PROC SQL Automatic Macro Variables” on page 157

FEEDBACK|NOFEEDBACK
specifies whether PROC SQL displays, in the SAS log, PROC SQL statements after
view references are expanded or certain other transformations of the statement are
made.

This option has the following effects:

• Any asterisk (for example, SELECT *) is expanded into the list of qualified
columns that it represents.

• Any PROC SQL view is expanded into the underlying query.

• Macro variables are resolved.

• Parentheses are shown around all expressions to further indicate their order of
evaluation.

• Comments are removed.

Default: NOFEEDBACK

FLOW<=n <m>>|NOFLOW
specifies that character columns longer than n are flowed to multiple lines. PROC
SQL sets the column width at n and specifies that character columns longer than n
are flowed to multiple lines. When you specify FLOW=n m, PROC SQL floats the
width of the columns between these limits to achieve a balanced layout. Specifying
FLOW without arguments is equivalent to specifying FLOW=12 200.
Default: NOFLOW

INOBS=n
restricts the number of rows (observations) that PROC SQL retrieves from any single
source.
Tip: This option is useful for debugging queries on large tables.

IPASSTHRU|NOIPASSTHRU
specifies whether implicit pass through is enabled or disabled.

Implicit pass through is enabled when PROC SQL is invoked. You can disable it for
a query or series of queries. The primary reasons that you might want to disable
implicit pass through are as follows:

218 Chapter 7 • SQL Procedure

• DBMSs use SQL2 semantics for NULL values, which behave somewhat
differently than SAS missing values.

• PROC SQL might do a better job of query optimization.

Default: IPASSTHRU
See: The documentation on the pass-through facility for your DBMS in

SAS/ACCESS for Relational Databases: Reference.

LOOPS=n
restricts PROC SQL to n iterations through its inner loop. You use the number of
iterations reported in the SQLOOPS macro variable (after each SQL statement is
executed) to discover the number of loops. Set a limit to prevent queries from
consuming excessive computer resources. For example, joining three large tables
without meeting the join-matching conditions could create a huge internal table that
would be inefficient to execute.
See: “Using the PROC SQL Automatic Macro Variables” on page 157

NOCONSTDATETIME
See “CONSTDATETIME|NOCONSTDATETIME” on page 217

NODOUBLE
See “DOUBLE|NODOUBLE” on page 217

NOERRORSTOP
See “ERRORSTOP|NOERRORSTOP” on page 217

NOEXEC
See “EXEC|NOEXEC” on page 218

NOFEEDBACK
See “FEEDBACK|NOFEEDBACK” on page 218

NOFLOW
See “FLOW<=n <m>>|NOFLOW” on page 218.

NOIPASSTHRU
See “IPASSTHRU|NOIPASSTHRU” on page 218

NONUMBER
See “NUMBER|NONUMBER” on page 220

NOPRINT
See “PRINT|NOPRINT” on page 220

NOPROMPT
See “PROMPT|NOPROMPT” on page 220

NOREMERGE
See “REMERGE|NOREMERGE” on page 222

NOSORTMSG
See “SORTMSG|NOSORTMSG” on page 222

NOSTIMER
See “STIMER|NOSTIMER” on page 222

NOTHREADS
See “THREADS|NOTHREADS” on page 222

NOWARNRECURS
See “WARNRECURS|NOWARNRECURS” on page 223

PROC SQL Statement 219

NUMBER|NONUMBER
specifies whether the SELECT statement includes a column called ROW, which is
the row (or observation) number of the data as the rows are retrieved.
Default: NONUMBER
Example: “Example 4: Joining Two Tables” on page 251

OUTOBS=n
restricts the number of rows (observations) in the output. For example, if you specify
OUTOBS=10 and insert values into a table using a query expression, then the SQL
procedure inserts a maximum of 10 rows. Likewise, OUTOBS=10 limits the output
to 10 rows.

PRINT|NOPRINT
specifies whether the output from a SELECT statement is printed.
Default: PRINT
Interaction: NOPRINT affects the value of the SQLOBS automatic macro variable.

For more information, see “Using the PROC SQL Automatic Macro Variables”
on page 157.

Tip: NOPRINT is useful when you are selecting values from a table into macro
variables and do not want anything to be displayed.

PROMPT|NOPROMPT
modifies the effect of the INOBS=, OUTOBS=, and LOOPS= options. If you specify
the PROMPT option and reach the limit specified by INOBS=, OUTOBS=, or
LOOPS=, then PROC SQL prompts you to stop or continue. The prompting repeats
if the same limit is reached again.
Default: NOPROMPT

REDUCEPUT=ALL|NONE|DBMS|BASE
specifies the engine type to use to optimize a PUT function in a query. The PUT
function is replaced with a logically equivalent expression. The engine type can be
one of the following values:

ALL
specifies to consider the optimization of all PUT functions, regardless of the
engine that is used by the query to access the data.

NONE
specifies to not optimize any PUT function.

DBMS
specifies to consider the optimization of all PUT functions in a query performed
by a SAS/ACCESS engine.
Requirement: The first argument to the PUT function must be a variable that is

obtained by a table. The table must be accessed using a SAS/ACCESS
engine.

BASE
specifies to consider the optimization of all PUT functions in a query performed
by a SAS/ACCESS engine or a Base SAS engine.

Default: DBMS
Interactions:

If both the REDUCEPUT= option and the CONSTDATETIME option are
specified, PROC SQL replaces the DATE, TIME, DATETIME, and TODAY
functions with their respective values to determine the PUT function value before
the query executes.

220 Chapter 7 • SQL Procedure

If the query also contains a WHERE or HAVING clause, the evaluation of the
WHERE or HAVING clause is simplified.

Tip: Alternatively, you can set the SQLREDUCEPUT= system option. The value
that is specified in the SQLREDUCEPUT= system option is in effect for all SQL
procedure statements, unless the REDUCEPUT= option is set. The value of the
REDUCEPUT= option takes precedence over the SQLREDUCEPUT= system
option. The RESET statement can also be used to set or reset the REDUCEPUT=
option. However, changing the value of the REDUCEPUT= option does not
change the value of the SQLREDUCEPUT= system option. For more
information, see the “SQLREDUCEPUT= System Option” on page 366.

REDUCEPUTOBS=n
when the REDUCEPUT= option is set to DBMS, BASE, or ALL, specifies the
minimum number of observations that must be in a table for PROC SQL to consider
optimizing the PUT function in a query.
Default: 0, which indicates that there is no minimum number of observations in a

table for PROC SQL to optimize the PUT function.
Range: 0 – 263–1, or approximately 9.2 quintillion
Requirement: n must be an integer
Interaction: The REDUCEPUTOBS= option works only for DBMSs that record the

number of observations in a table. If your DBMS does not record the number of
observations, but you create row counts on your table, the REDUCEPUTOBS=
option will work.

Tip: Alternatively, you can set the SQLREDUCEPUTOBS= system option. The
value that is specified in the SQLREDUCEPUTOBS= system option is in effect
for all SQL procedure statements, unless the REDUCEPUTOBS= option is set.
The value of the REDUCEPUTOBS= option takes precedence over the
SQLREDUCEPUTOBS= system option. The RESET statement can also be used
to set or reset the REDUCEPUTOBS= option. However, changing the value of
the REDUCEPUTOBS= option does not change the value of the
SQLREDUCEPUTOBS= system option. For more information, see the
“SQLREDUCEPUTOBS= System Option” on page 367.

REDUCEPUTVALUES=n
when the REDUCEPUT= option is set to DBMS, BASE, or ALL, specifies the
maximum number of SAS format values that can exist in a PUT function expression
for PROC SQL to consider optimizing the PUT function in a query.
Default: 100
Range: 100 – 3,000
Requirement: n must be an integer
Interaction: If the number of SAS format values in a PUT function expression is

greater than this value, PROC SQL does not optimize the PUT function.
Tips:

Alternatively, you can set the SQLREDUCEPUTVALUES= system option. The
value that is specified in the SQLREDUCEPUTVALUES= system option is in
effect for all SQL procedure statements, unless the REDUCEPUTVALUES=
option is set. The value of the REDUCEPUTVALUES= option takes precedence
over the SQLREDUCEPUTVALUES= system option. The RESET statement can
also be used to set or reset the REDUCEPUTVALUES= option. However,
changing the value of the REDUCEPUTVALUES= option does not change the
value of the SQLREDUCEPUTVALUES= system option. For more information,
see “SQLREDUCEPUTVALUES= System Option” on page 368.
The value for REDUCEPUTVALUES= is used for each individual optimization.
For example, if you have a PUT function in a WHERE clause, and another PUT

PROC SQL Statement 221

function in a SELECT statement, and both have user-defined formats with
contained values, the value of REDUCEPUTVALUES= is applied separately for
the clause and the statement.

REMERGE|NOREMERGE
Specifies whether PROC SQL can process queries that use remerging of data. The
remerge feature of PROC SQL makes two passes through a table, using data in the
second pass that was created in the first pass, in order to complete a query. When the
NOREMERGE system option is set, PROC SQL cannot process remerging of data.
If remerging is attempted when the NOREMERGE option is set, an error is written
to the SAS log.
Default: REMERGE
Tip: Alternatively, you can set the SQLREMERGE system option. The value that is

specified in the SQLREMERGE system option is in effect for all SQL procedure
statements, unless the PROC SQL REMERGE option is set. The value of the
REMERGE option takes precedence over the SQLREMERGE system option.
The RESET statement can also be used to set or reset the REMERGE option.
However, changing the value of the REMERGE option does not change the value
of the SQLREMERGE system option. For more information, see
“SQLREMERGE System Option” on page 370.

See: “Remerging Data” on page 352

SORTMSG|NOSORTMSG
Certain operations, such as ORDER BY, can sort tables internally using PROC
SORT. Specifying SORTMSG requests information from PROC SORT about the
sort and displays the information in the log.
Default: NOSORTMSG

SORTSEQ=sort-table
specifies the collating sequence to use when a query contains an ORDER BY clause.
Use this option only if you want a collating sequence other than your system's or
installation's default collating sequence.
See: SORTSEQ= option in SAS National Language Support (NLS): Reference

Guide.

STIMER|NOSTIMER
specifies whether PROC SQL writes timing information to the SAS log for each
statement, rather than as a cumulative value for the entire procedure. For this option
to work, you must also specify the SAS system option STIMER. Some operating
environments require that you specify this system option when you invoke SAS. If
you use the system option alone, then you receive timing information for the entire
SQL procedure, not on a statement-by-statement basis.
Default: NOSTIMER

STOPONTRUNC
specifies to not insert or update a row that contains data larger than the column when
a truncation error occurs. This applies only when using the SET clause in an
INSERT or UPDATE statement.

THREADS|NOTHREADS
overrides the SAS system option THREADS|NOTHREADS for a particular
invocation of PROC SQL unless the system option is restricted. (See Restriction.)
THREADS|NOTHREADS can also be specified in a RESET statement for use in
particular queries. When THREADS is specified, PROC SQL uses parallel
processing in order to increase the performance of sorting operations that involve
large amounts of data. For more information about parallel processing, see SAS
Language Reference: Concepts.

222 Chapter 7 • SQL Procedure

Default: value of SAS system option THREADS|NOTHREADS.
Restriction: Your site administrator can create a restricted options table. A

restricted options table specifies SAS system option values that are established at
start-up and cannot be overridden. If the THREADS | NOTHREADS system
option is listed in the restricted options table, any attempt to set it is ignored and
a warning message is written to the SAS log.

Interaction: When THREADS|NOTHREADS has been specified in a PROC SQL
statement or a RESET statement, there is no way to reset the option to its default
(that is, the value of the SAS system option THREADS|NOTHREADS) for that
invocation of PROC SQL.

UNDO_POLICY=NONE|OPTIONAL|REQUIRED
specifies how PROC SQL handles updated data if errors occur while you are
updating data. You can use UNDO_POLICY= to control whether your changes are
permanent.

NONE
keeps any updates or inserts.

OPTIONAL
reverses any updates or inserts that it can reverse reliably.

REQUIRED
reverses all inserts or updates that have been done to the point of the error. In
some cases, the UNDO operation cannot be done reliably. For example, when a
program uses a SAS/ACCESS view, it might not be able to reverse the effects of
the INSERT and UPDATE statements without reversing the effects of other
changes at the same time. In that case, PROC SQL issues an error message and
does not execute the statement. Also, when a SAS data set is accessed through a
SAS/SHARE server and is opened with the data set option
CNTLLEV=RECORD, you cannot reliably reverse your changes.

This option can enable other users to update newly inserted rows. If an error
occurs during the insert, then PROC SQL can delete a record that another user
updated. In that case, the statement is not executed, and an error message is
issued.

Default: REQUIRED
Tips:

If you are updating a data set using the SPD Engine, you can significantly
improve processing performance by setting UNDO_POLICY=NONE. However,
ensure that NONE is an appropriate setting for your application.
Alternatively, you can set the SQLUNDOPOLICY system option. The value that
is specified in the SQLUNDOPOLICY= system option is in effect for all SQL
procedure statements, unless the PROC SQL UNDO_POLICY= option is set.
The value of the UNDO_POLICY= option takes precedence over the
SQLUNDOPOLICY= system option. The RESET statement can also be used to
set or reset the UNDO_POLICY= option. However, changing the value of the
UNDO_POLICY= option does not change the value of the
SQLUNDOPOLICY= system option. After the procedure completes, it reverts to
the value of the SQLUNDOPOLICY= system option. For more information, see
the “SQLUNDOPOLICY= System Option” on page 370.

WARNRECURS|NOWARNRECURS
specifies whether a warning displays in the SAS log for recursive references.

NOWARNRECURS specifies to display recursive references in a note, instead of as
a warning in the SAS log.
Default: WARNRECURS

PROC SQL Statement 223

Details
Note: Options can be added, removed, or changed between PROC SQL statements with

the “RESET Statement” on page 242.

ALTER TABLE Statement
Adds columns to, drops columns from, and changes column attributes in an existing table. Adds, modifies,
and drops integrity constraints from an existing table.

Restrictions: You cannot use any type of view in an ALTER TABLE statement.
You cannot use ALTER TABLE on a table that is accessed by an engine that does
not support UPDATE processing.
You must use at least one ADD, DROP, or MODIFY clause in the ALTER TABLE
statement.

See: “Example 3: Updating Data in a PROC SQL Table” on page 249

Syntax
ALTER TABLE table-name

<ADD CONSTRAINT constraint-nameconstraint-clause<, … constraint-nameconstraint-clause>>
<ADDconstraint-specification<, … constraint-specification>>
<ADD column-definition<, … column-definition>>
<DROP CONSTRAINTconstraint-name<, … constraint-name>>
<DROPcolumn<, … column>>
<DROP FOREIGN KEYconstraint-name>
<DROP PRIMARY KEY>
<MODIFY column-definition<, … column-definition>>

;

Required Arguments
<ADD CONSTRAINT constraint-nameconstraint-specification<, ... constraint-
nameconstraint-specification>>

adds the integrity constraint that is specified in constraint-specification and assigns
constraint-name to it.

<ADD constraint-specification<, ... constraint-specification>>
adds the integrity constraint that is specified in constraint-specification and assigns a
default name to it. The default constraint name has the form that is shown in the
following table:

Default Name Constraint Type

NMxxxx Not null

UNxxxx Unique

CKxxxx Check

224 Chapter 7 • SQL Procedure

PKxxxx Primary key

FKxxxx Foreign key

In these default names, xxxx is a counter that begins at 0001.

<ADD column-definition<, ... column-definition>>
adds the column or columns that are specified in each column-definition.

column
names a column in table-name.

column-definition
See “column-definition” on page 310

constraint
is one of the following integrity constraints:

CHECK (WHERE-clause)
specifies that all rows in table-name satisfy the WHERE-clause.

DISTINCT (column<, ... column>)
specifies that the values of each column must be unique. This constraint is
identical to UNIQUE.

FOREIGN KEY (column<, ... column>)REFERENCES table-name <ON DELETE
referential-action> <ON UPDATE referential-action>

specifies a foreign key, that is, a set of columns whose values are linked to the
values of the primary key variable in another table (the table-name that is
specified for REFERENCES). The referential-actions are performed when the
values of a primary key column that is referenced by the foreign key are updated
or deleted.
Restriction: When defining overlapping primary key and foreign key

constraints, the variables in a data file are part of both a primary key and a
foreign key definition. If you use the exact same variables, then the variables
must be defined in a different order. The foreign key's update and delete
referential actions must both be RESTRICT.

NOT NULL (column)
specifies that column does not contain a null or missing value, including special
missing values.

PRIMARY KEY (column<,…column>)
specifies one or more primary key columns, that is, columns that do not contain
missing values and whose values are unique.
Restriction: When you are defining overlapping primary key and foreign key

constraints, the variables in a data file are part of both a primary key
definition and a foreign key definition. If you use the exact same variables,
then the variables must be defined in a different order.

UNIQUE (column<,…column>)
specifies that the values of each column must be unique. This constraint is
identical to DISTINCT.

constraint-name
specifies a name for the constraint that is being specified. The name must be a valid
SAS name.

ALTER TABLE Statement 225

Note: The names PRIMARY, FOREIGN, MESSAGE, UNIQUE, DISTINCT,
CHECK, and NOT cannot be used as values for constraint-name.

constraint-specification
consists of

constraint <MESSAGE='message-string' <MSGTYPE=message-type>>

<DROP column<,…column>>
deletes each column from the table.

<DROP CONSTRAINTconstraint-name<,…constraint-name>>
deletes the integrity constraint that is referenced by each constraint-name. To find
the name of an integrity constraint, use the DESCRIBE TABLE CONSTRAINTS
clause. (See “DESCRIBE Statement” on page 237.)

<DROP FOREIGN KEY constraint-name>
Removes the foreign key constraint that is referenced by constraint-name.

Note: The DROP FOREIGN KEY clause is a DB2 extension.

<DROP PRIMARY KEY>
Removes the primary key constraint from table-name.

Note: The DROP PRIMARY KEY clause is a DB2 extension.

message-string
specifies the text of an error message that is written to the log when the integrity
constraint is not met. The maximum length of message-string is 250 characters.

message-type
specifies how the error message is displayed in the SAS log when an integrity
constraint is not met.

NEWLINE
the text that is specified for MESSAGE= is displayed as well as the default error
message for that integrity constraint.

USER
only the text that is specified for MESSAGE= is displayed.

<MODIFY column-definition<, ... column-definition>>
changes one or more attributes of the column that is specified in each column-
definition.

referential-action
specifies the type of action to be performed on all matching foreign key values.

CASCADE
allows primary key data values to be updated, and updates matching values in the
foreign key to the same values. This referential action is currently supported for
updates only.

RESTRICT
prevents the update or deletion of primary key data values if a matching value
exists in the foreign key. This referential action is the default.

SET NULL
allows primary key data values to be updated, and sets all matching foreign key
values to NULL.

table-name

• in the ALTER TABLE statement, refers to the name of the table that is to be
altered.

226 Chapter 7 • SQL Procedure

• in the REFERENCES clause, refers to the name of table that contains the
primary key that is referenced by the foreign key.

table-name can be a one-level name, a two-level libref.table name, or a physical
pathname that is enclosed in single quotation marks.

WHERE-clause
specifies a SAS WHERE clause. Do not include the WHERE keyword in the
WHERE clause.

Details

Specifying Initial Values of New Columns
When the ALTER TABLE statement adds a column to the table, it initializes the
column's values to missing in all rows of the table. Use the UPDATE statement to add
values to the new column or columns.

Changing Column Attributes
If a column is already in the table, then you can change the following column attributes
by using the MODIFY clause: length, informat, format, and label. The values in a table
are either truncated or padded with blanks (if character data) as necessary to meet the
specified length attribute.

You cannot change a character column to numeric and vice versa. To change a column's
data type, drop the column and then add it (and its data) again, or use the DATA step.

Note: You cannot change the length of a numeric column with the ALTER TABLE
statement. Use the DATA step instead.

Renaming Columns
You cannot use the RENAME= data set option with the ALTER TABLE statement to
change a column's name. However, you can use the RENAME= data set option with the
CREATE TABLE or SELECT statement. For more information about the RENAME=
data set option, see the section on SAS data set options in SAS Data Set Options:
Reference.

Indexes on Altered Columns
When you alter the attributes of a column and an index has been defined for that column,
the values in the altered column continue to have the index defined for them. If you drop
a column with the ALTER TABLE statement, then all the indexes (simple and
composite) in which the column participates are also dropped. See “CREATE INDEX
Statement” on page 228 for more information about creating and using indexes.

Integrity Constraints
Use ALTER TABLE to modify integrity constraints for existing tables. Use the
CREATE TABLE statement to attach integrity constraints to new tables. For more
information about integrity constraints, see the section on SAS files in SAS Language
Reference: Concepts.

CONNECT Statement
Establishes a connection with a DBMS that SAS/ACCESS software supports.

CONNECT Statement 227

Requirement: SAS/ACCESS software is required. For more information about this statement, see
your SAS/ACCESS documentation.

See: “Connecting to a DBMS by Using the SQL Procedure Pass-Through Facility” on
page 166

Syntax
CONNECT TO dbms-name <AS alias>
<(connect-statement-argument-1=value<… connect-statement-argument-n=value>)>
<(database-connection-argument-1=value<… database-connection-argument-n=value>)>;
CONNECT USING libname <AS alias>;

Required Arguments
alias

specifies an alias that has 1 to 32 characters. The keyword AS must precede alias.
Some DBMSs allow more than one connection. The optional AS clause enables you
to name the connections so that you can refer to them later.

connect-statement-argument=value
specifies values for arguments that indicate whether you can make multiple
connections, shared or unique connections, and so on, to the database. These
arguments are optional, but if they are included, then they must be enclosed in
parentheses. See SAS/ACCESS for Relational Databases: Reference for more
information about these arguments.

database-connection-argument=value
specifies values for the DBMS-specific arguments that are needed by PROC SQL in
order to connect to the DBMS. These arguments are optional for most databases, but
if they are included, then they must be enclosed in parentheses. For more
information, see the SAS/ACCESS documentation for your DBMS.

dbms-name
identifies the DBMS that you want to connect to (for example, ORACLE or DB2).

libname
specifies the LIBNAME where a DBMS connection has already been established.
The LIBNAME can be reused in the SQL procedure using the CONNECT statement.

CREATE INDEX Statement
Creates indexes on columns in tables.

Restriction: You cannot use CREATE INDEX on a table that is accessed with an engine that
does not support UPDATE processing.

Syntax
CREATE <UNIQUE> INDEX index-name

ON table-name (column <, … column>);

228 Chapter 7 • SQL Procedure

Required Arguments
column

specifies a column in table-name.

index-name
names the index that you are creating. If you are creating an index on one column
only, then index-name must be the same as column. If you are creating an index on
more than one column, then index-name cannot be the same as any column in the
table.

table-name
specifies a PROC SQL table.

Details

Indexes in PROC SQL
An index stores both the values of a table's columns and a system of directions that
enable access to rows in that table by index value. Defining an index on a column or set
of columns enables SAS, under certain circumstances, to locate rows in a table more
quickly and efficiently. Indexes enable PROC SQL to execute the following classes of
queries more efficiently:

• comparisons against a column that is indexed

• an IN subquery where the column in the inner subquery is indexed

• correlated subqueries, where the column being compared with the correlated
reference is indexed

• join-queries, where the join-expression is an equals comparison and all the columns
in the join-expression are indexed in one of the tables being joined.

SAS maintains indexes for all changes to the table, whether the changes originate from
PROC SQL or from some other source. Therefore, if you alter a column's definition or
update its values, then the same index continues to be defined for it. However, if an
indexed column in a table is dropped, then the index on it is also dropped.

You can create simple or composite indexes. A simple index is created on one column in
a table. A simple index must have the same name as that column. A composite index is
one index name that is defined for two or more columns. The columns can be specified
in any order, and they can have different data types. A composite index name cannot
match the name of any column in the table. If you drop a composite index, then the
index is dropped for all the columns named in that composite index.

UNIQUE Keyword
The UNIQUE keyword causes SAS to reject any change to a table that would cause
more than one row to have the same index value. Unique indexes guarantee that data in
one column, or in a composite group of columns, remains unique for every row in a
table. A unique index can be defined for a column that includes NULL or missing values
if each row has a unique index value.

Managing Indexes
You can use the CONTENTS statement in the DATASETS procedure to display a table's
index names and the columns for which they are defined. You can also use the
DICTIONARY tables INDEXES, TABLES, and COLUMNS to list information about
indexes. For more information, see “Accessing SAS System Information by Using
DICTIONARY Tables” on page 144.

CREATE INDEX Statement 229

See the section on SAS files in SAS Language Reference: Concepts for a further
description of when to use indexes and how they affect SAS statements that handle BY-
group processing.

CREATE TABLE Statement
Creates PROC SQL tables.

See: “Example 1: Creating a Table and Inserting Data into It” on page 245
“Example 2: Creating a Table from a Query's Result” on page 247

Syntax
CREATE TABLE table-name

(column-specification<, …column-specification | constraint-specification>)
;
CREATE TABLE table-name LIKE table-name2;
CREATE TABLE table-name AS query-expression

<ORDER BYorder-by-item<, … order-by-item>>;

Required Arguments
column-constraint

is one of the following:

CHECK (WHERE-clause
specifies that all rows in table-name satisfy the WHERE-clause.

DISTINCT
specifies that the values of the column must be unique. This constraint is
identical to UNIQUE.

NOT NULL
specifies that the column does not contain a null or missing value, including
special missing values.

PRIMARY KEY
specifies that the column is a primary key column, that is, a column that does not
contain missing values and whose values are unique.
Restriction: When defining overlapping primary key and foreign key

constraints, the variables in a data file are part of both a primary key and a
foreign key definition. If you use the exact same variables, then the variables
must be defined in a different order.

REFERENCEStable-name <ON DELETE referential-action><ON UPDATE
referential-action>

specifies that the column is a foreign key, that is, a column whose values are
linked to the values of the primary key variable in another table (the table-name
that is specified for REFERENCES). The referential-actions are performed when
the values of a primary key column that is referenced by the foreign key are
updated or deleted.
Restriction: When you are defining overlapping primary key and foreign key

constraints, the variables in a data file are part of both a primary key
definition and a foreign key definition. If you use the exact same variables,

230 Chapter 7 • SQL Procedure

then the variables must be defined in a different order. The foreign key's
update and delete referential actions must both be RESTRICT.

UNIQUE
specifies that the values of the column must be unique. This constraint is
identical to DISTINCT.

Note: If you specify column-constraint, then SAS automatically assigns a name
to the constraint. The constraint name has the form the following form, where
xxxx is a counter that begins at 0001.

Default name Constraint type

CKxxxx Check

FKxxxx Foreign key

NMxxxx Not Null

PKxxxx Primary key

UNxxxx Unique

column-definition
See “column-definition” on page 310

column-specification
consists of

column-definition <column-constraint>

constraint
is one of the following:

CHECK WHERE-clause
specifies that all rows in table-name satisfy the WHERE-clause.

DISTINCT (column<, … column>
specifies that the values of each column must be unique. This constraint is
identical to UNIQUE.

FOREIGN KEY (column<, … column>)
REFERENCES table-name<ON DELETE referential-action> <ON UPDATE
referential-action>

specifies a foreign key, that is, a set of columns whose values are linked to the
values of the primary key variable in another table (the table-name that is
specified for REFERENCES). The referential-actions are performed when the
values of a primary key column that is referenced by the foreign key are updated
or deleted.
Restriction: When you are defining overlapping primary key and foreign key

constraints, the variables in a data file are part of both a primary key
definition and a foreign key definition. If you use the exact same variables,
then the variables must be defined in a different order. The foreign key's
update and delete referential actions must both be RESTRICT.

NOT NULL (column)
specifies that column does not contain a null or missing value, including special
missing values.

CREATE TABLE Statement 231

PRIMARY KEY (column<, …column>)
specifies one or more primary key columns, that is, columns that do not contain
missing values and whose values are unique.
Restriction: When defining overlapping primary key and foreign key

constraints, the variables in a data file are part of both a primary key and a
foreign key definition. If you use the exact same variables, then the variables
must be defined in a different order.

UNIQUE (column<, …column>)
specifies that the values of each column must be unique. This constraint is
identical to DISTINCT.

constraint-name
specifies a name for the constraint that is being specified. The name must be a valid
SAS name.

Note: The names PRIMARY, FOREIGN, MESSAGE, UNIQUE, DISTINCT,
CHECK, and NOT cannot be used as values for constraint-name.

constraint-specification
consists of

CONSTRAINT constraint-name constraint <MESSAGE='message-string'
<MSGTYPE=message-type>>

message-string
specifies the text of an error message that is written to the log when the integrity
constraint is not met. The maximum length of message-string is 250 characters.

message-type
specifies how the error message is displayed in the SAS log when an integrity
constraint is not met.

NEWLINE
the text that is specified for MESSAGE= is displayed as well as the default error
message for that integrity constraint.

USER
only the text that is specified for MESSAGE= is displayed.

ORDER BY order-by-item
sorts the rows in table-name by the values of each order-by-item. See “ORDER BY
Clause” on page 303.

query-expression
creates table-name from the results of a query. See “query-expression” on page 332.

referential-action
specifies the type of action to be performed on all matching foreign key values.

CASCADE
allows primary key data values to be updated, and updates matching values in the
foreign key to the same values. This referential action is currently supported for
updates only.

RESTRICT
occurs only if there are matching foreign key values. This referential action is the
default.

SET NULL
sets all matching foreign key values to NULL.

232 Chapter 7 • SQL Procedure

table-name

• in the CREATE TABLE statement, refers to the name of the table that is to be
created. You can use data set options by placing them in parentheses immediately
after table-name. See “Using SAS Data Set Options with PROC SQL” on page
151.

• in the REFERENCES clause, refers to the name of table that contains the
primary key that is referenced by the foreign key.

table-name2
creates table-name with the same column names and column attributes as table-
name2, but with no rows.

WHERE-clause
specifies a SAS WHERE clause. Do not include the WHERE keyword in the
WHERE clause.

Details

Creating a Table without Rows
• The first form of the CREATE TABLE statement creates tables that automatically

map SQL data types to tables that are supported by SAS. Use this form when you
want to create a new table with columns that are not present in existing tables. It is
also useful if you are running SQL statements from an SQL application in another
SQL-based database.

• The second form uses a LIKE clause to create a table that has the same column
names and column attributes as another table. To drop any columns in the new table,
you can specify the DROP= data set option in the CREATE TABLE statement. The
specified columns are dropped when the table is created. Indexes are not copied to
the new table.

Both of these forms create a table without rows. You can use an INSERT statement
to add rows. Use an ALTER TABLE statement to modify column attributes or to add
or drop columns.

Creating a Table from a Query Expression
• The third form of the CREATE TABLE statement stores the results of any query

expression in a table and does not display the output. It is a convenient way to create
temporary tables that are subsets or supersets of other tables.

When you use this form, a table is physically created as the statement is executed.
The newly created table does not reflect subsequent changes in the underlying tables
(in the query expression). If you want to continually access the most current data,
then create a view from the query expression instead of a table. See “CREATE
VIEW Statement” on page 234.

CAUTION:
Recursive table references can cause data integrity problems. While it is
possible to recursively reference the target table of a CREATE TABLE AS
statement, doing so can cause data integrity problems and incorrect results.
Constructions such as the following should be avoided: proc sql; create
table a as select var1, var2 from a;

CREATE TABLE Statement 233

Integrity Constraints
You can attach integrity constraints when you create a new table. To modify integrity
constraints, use the ALTER TABLE statement.

The following interactions apply to integrity constraints when they are part of a column
specification.

• You cannot specify compound primary keys.

• The check constraint that you specify in a column specification does not need to
reference that same column in its WHERE clause.

• You can specify more than one integrity constraint.

• You can specify the MSGTYPE= and MESSAGE= options on a constraint.

For more information about integrity constraints, see the section on SAS files in SAS
Language Reference: Concepts.

CREATE VIEW Statement
Creates a PROC SQL view from a query expression.

See: “What Are Views?” on page 211
“Example 8: Creating a View from a Query's Result” on page 265

Syntax
CREATE VIEW proc-sql-view <(column-name-list)> AS query-expression

<ORDER BYorder-by-item<, … order-by-item>>
<USINGlibname-clause<, … libname-clause>> ;

Required Arguments
column-name-list

is a comma-separated list of column names for the view, to be used in place of the
column names or aliases that are specified in the SELECT clause. The names in this
list are assigned to columns in the order in which they are specified in the SELECT
clause. If the number of column names in this list does not equal the number of
columns in the SELECT clause, then a warning is written to the SAS log.

query-expression
See “query-expression” on page 332

libname-clause
is one of the following:

LIBNAME libref <engine> ' SAS-library' <option(s)> <engine-host-option(s)>
LIBNAME libref SAS/ACCESS-engine-name<SAS/ACCESS-engine-connection-option(s)>
<SAS/ACCESS-engine-LIBNAME-option(s)>
See SAS Statements: Reference for information about the Base SAS LIBNAME
statement. See SAS/ACCESS for Relational Databases: Reference for information
about the LIBNAME statement for relational databases.

order-by-item
See “ORDER BY Clause” on page 303

234 Chapter 7 • SQL Procedure

proc-sql-view
specifies the name for the PROC SQL view that you are creating. See “What Are
Views?” on page 211 for a definition of a PROC SQL view.

Details

Sorting Data Retrieved by Views
PROC SQL enables you to specify the ORDER BY clause in the CREATE VIEW
statement. When a view with an ORDER BY clause is accessed, and the ORDER BY
clause directly affects the order of the results, its data is sorted and displayed as specified
by the ORDER BY clause. However, if the ORDER BY clause does not directly affect
the order of the results (for example, if the view is specified as part of a join), then
PROC SQL ignores the ORDER BY clause in order to enhance performance.

Note: If the ORDER BY clause is omitted, then a particular order to the output rows,
such as the order in which the rows are encountered in the queried table, cannot be
guaranteed—even if an index is present. Without an ORDER BY clause, the order of
the output rows is determined by the internal processing of PROC SQL, the default
collating sequence of SAS, and your operating environment. Therefore, if you want
your results to appear in a particular order, then use the ORDER BY clause.

Note: If you specify the NUMBER option in the PROC SQL statement when you create
your view, then the ROW column appears in the output. However, you cannot order
by the ROW column in subsequent queries. See the description of “NUMBER|
NONUMBER” on page 220.

Librefs and Stored Views
You can refer to a table name alone (without the libref) in the FROM clause of a
CREATE VIEW statement if the table and view reside in the same SAS library, as in
this example:

 create view proclib.view1 as
 select *
 from invoice
 where invqty>10;

In this view, VIEW1 and INVOICE are stored permanently in the SAS library
referenced by PROCLIB. Specifying a libref for INVOICE is optional.

Updating Views
You can update a view's underlying data with some restrictions. See “Updating PROC
SQL and SAS/ACCESS Views” on page 168.

Embedded LIBNAME Statements
The USING clause enables you to store DBMS connection information in a view by
embedding the SAS/ACCESS LIBNAME statement inside the view. When PROC SQL
executes the view, the stored query assigns the libref and establishes the DBMS
connection using the information in the LIBNAME statement. The scope of the libref is
local to the view, and will not conflict with any identically named librefs in the SAS
session. When the query finishes, the connection to the DBMS is terminated and the
libref is deassigned.

The USING clause must be the last clause in the CREATE VIEW statement. Multiple
LIBNAME statements can be specified, separated by commas. In the following example,
a connection is made and the libref ACCREC is assigned to an ORACLE database.

CREATE VIEW Statement 235

create view proclib.view1 as
 select *
 from accrec.invoices as invoices
 using libname accrec oracle
 user=username
pass=password
 path='dbms-path';

For more information about the SAS/ACCESS LIBNAME statement, see the
SAS/ACCESS documentation for your DBMS.

Note: Starting in SAS System 9, PROC SQL views, the pass-through facility, and the
SAS/ACCESS LIBNAME statement are the preferred ways to access relational
DBMS data; SAS/ACCESS views are no longer recommended. You can convert
existing SAS/ACCESS views to PROC SQL views by using the CV2VIEW
procedure. For more information, see Chapter 33, “CV2VIEW Procedure” in
SAS/ACCESS for Relational Databases: Reference.

You can also embed a SAS LIBNAME statement in a view with the USING clause,
which enables you to store SAS libref information in the view. Just as in the embedded
SAS/ACCESS LIBNAME statement, the scope of the libref is local to the view, and it
will not conflict with an identically named libref in the SAS session.

create view work.tableview as
 select * from proclib.invoices
 using libname proclib
'SAS-library';

DELETE Statement
Removes one or more rows from a table or view that is specified in the FROM clause.

Restriction: You cannot use DELETE FROM on a table that is accessed by an engine that does
not support UPDATE processing.

See: “Example 5: Combining Two Tables” on page 254

Syntax
DELETE

FROM table-name|sas/access-view|proc-sql-view <ASalias>
<WHERE sql-expression>;

Required Arguments
alias

assigns an alias to table-name, sas/access-view, or proc-sql-view.

sas/access-view
specifies a SAS/ACCESS view that you are deleting rows from.

proc-sql-view
specifies a PROC SQL view that you are deleting rows from. proc-sql-view can be a
one-level name, a two-level libref.view name, or a physical pathname that is enclosed
in single quotation marks.

sql-expression
See “sql-expression” on page 340

236 Chapter 7 • SQL Procedure

table-name
specifies the table that you are deleting rows from. table-name can be a one-level
name, a two-level libref.table name, or a physical pathname that is enclosed in single
quotation marks.

CAUTION:
Recursive table references can cause data integrity problems. Although it is
possible to recursively reference the target table of a DELETE statement, doing
so can cause data integrity problems and incorrect results. Constructions such as
the following should be avoided:

proc sql;
 delete from a
 where var1 > (select min(var2) from a);

Details

Deleting Rows through Views
You can delete one or more rows from a view's underlying table, with some restrictions.
See “Updating PROC SQL and SAS/ACCESS Views” on page 168.

CAUTION:
If you omit a WHERE clause, the DELETE statement deletes all of the rows from
the specified table or the table that is described by a view. The rows are not
actually deleted from the table until it is re-created.

DESCRIBE Statement
Displays a PROC SQL definition in the SAS log.

Restriction: PROC SQL views are the only type of view allowed in a DESCRIBE VIEW
statement.

See: “Example 6: Reporting from DICTIONARY Tables” on page 257

Syntax
DESCRIBE TABLE table-name <, … table-name>;
DESCRIBE VIEW proc-sql-view <, … proc-sql-view>;
DESCRIBE TABLE CONSTRAINTS table-name <, … table-name>;

Required Arguments
table-name

specifies a PROC SQL table. table-name can be a one-level name, a two-level
libref.table name, or a physical pathname that is enclosed in single quotation marks.

proc-sql-view
specifies a PROC SQL view. proc-sql-view can be a one-level name, a two-level
libref.view name, or a physical pathname that is enclosed in single quotation marks.

Details
• The DESCRIBE TABLE statement writes a CREATE TABLE statement to the SAS

log for the table specified in the DESCRIBE TABLE statement, regardless of how

DESCRIBE Statement 237

the table was originally created (for example, with a DATA step). If applicable, SAS
data set options are included with the table definition. If indexes are defined on
columns in the table, then CREATE INDEX statements for those indexes are also
written to the SAS log.

When you are transferring a table to a DBMS that SAS/ACCESS software supports,
it is helpful to know how it is defined. To find out more information about a table,
use the FEEDBACK option or the CONTENTS statement in the DATASETS
procedure.

• The DESCRIBE VIEW statement writes a view definition to the SAS log. If you use
a PROC SQL view in the DESCRIBE VIEW statement that is based on or derived
from another view, then you might want to use the FEEDBACK option in the PROC
SQL statement. This option displays in the SAS log how the underlying view is
defined and expands any expressions that are used in this view definition. The
CONTENTS statement in DATASETS procedure can also be used with a view to
find out more information.

To define any password-protected SAS view, you must specify a password. If the
SAS view was created with more than one password, you must specify its most
restrictive password if you want to access a definition of the view. For example, to
define a SAS view that has both Read and Write protection, you must specify its
Write password. Similarly, to define a view that has both Read and Alter protection,
you must specify its Alter password. (Alter is the more restrictive of the two.)For
more information, see “Using Passwords with Views” in Chapter 34 of SAS
Language Reference: Concepts.

• The DESCRIBE TABLE CONSTRAINTS statement lists the integrity constraints
that are defined for the specified table or tables. However, names of the foreign key
data set variables that reference the primary key constraint will not be displayed as
part of the primary key constraint's DESCRIBE TABLE output.

DISCONNECT Statement
Ends the connection with a DBMS that a SAS/ACCESS interface supports.

Requirement: SAS/ACCESS software is required. For more information about this statement, see
your SAS/ACCESS documentation.

See: “Connecting to a DBMS by Using the SQL Procedure Pass-Through Facility” on
page 166

Syntax
DISCONNECT FROM dbms-name|alias;

Required Arguments
alias

specifies the alias that is defined in the CONNECT statement.

dbms-name
specifies the DBMS from which you want to end the connection (for example, DB2
or ORACLE). The name that you specify should match the name that is specified in
the CONNECT statement.

238 Chapter 7 • SQL Procedure

Details
• An implicit COMMIT is performed before the DISCONNECT statement ends the

DBMS connection. If a DISCONNECT statement is not submitted, then implicit
DISCONNECT and COMMIT actions are performed and the connection to the
DBMS is broken when PROC SQL terminates.

• PROC SQL continues executing until you submit a QUIT statement, another SAS
procedure, or a DATA step.

DROP Statement
Deletes tables, views, or indexes.

Restriction: You cannot use DROP TABLE or DROP INDEX on a table that is accessed by an
engine that does not support UPDATE processing.

Syntax
DROP TABLE table-name <, … table-name>;
DROP VIEW view-name <, … view-name>;
DROP INDEX index-name <, … index-name>
FROM table-name;

Required Arguments
index-name

specifies an index that exists on table-name.

table-name
specifies a PROC SQL table. table-name can be a one-level name, a two-level
libref.table name, or a physical pathname that is enclosed in single quotation marks.

view-name
specifies a SAS view of any type: PROC SQL view, SAS/ACCESS view, or DATA
step view. view-name can be a one-level name, a two-level libref.view name, or a
physical pathname that is enclosed in single quotation marks.

Details
• If you drop a table that is referenced in a view definition and try to execute the view,

then an error message is written to the SAS log that states that the table does not
exist. Therefore, remove references in queries and views to any tables and views that
you drop.

• If you drop a table with indexed columns, then all the indexes are automatically
dropped. If you drop a composite index, then the index is dropped for all the columns
that are named in that index.

• You can use the DROP statement to drop a table or view in an external database that
is accessed with the pass-through facility or SAS/ACCESS LIBNAME statement,
but not for an external database table or view that a SAS/ACCESS view describes.

DROP Statement 239

EXECUTE Statement
Sends a DBMS-specific SQL statement to a DBMS that a SAS/ACCESS interface supports.

Requirement: SAS/ACCESS software is required. For more information about this statement, see
your SAS/ACCESS documentation.

See: “Connecting to a DBMS by Using the SQL Procedure Pass-Through Facility” on
page 166
SQL documentation for your DBMS

Syntax
EXECUTE (dbms-SQL-statement)
BY dbms-name|alias;

Required Arguments
alias

specifies an optional alias that is defined in the CONNECT statement. Note that alias
must be preceded by the keyword BY.

dbms-name
identifies the DBMS to which you want to direct the DBMS statement (for example,
ORACLE or DB2).

dbms-SQL-statement
is any DBMS-specific SQL statement, except the SELECT statement, which can be
executed by the DBMS-specific dynamic SQL. The SQL statement can contain a
semicolon. The SQL statement can be case-sensitive, depending on your data source,
and it is passed to the data source exactly as you enter it.

Details
• If your DBMS supports multiple connections, then you can use the alias that is

defined in the CONNECT statement. This alias directs the EXECUTE statements to
a specific DBMS connection.

• Any return code or message that is generated by the DBMS is available in the macro
variables SQLXRC and SQLXMSG after the statement completes.

Example
The following example, after the connection, uses the EXECUTE statement to drop a
table, create a table, and insert a row of data.

proc sql;
 execute(drop table ' My Invoice ') by db;
 execute(create table ' My Invoice '(
 ' Invoice Number ' LONG not null,
 ' Billed To ' VARCHAR(20),
 ' Amount ' CURRENCY,
 ' BILLED ON ' DATETIME)) by db;
 execute(insert into ' My Invoice '

240 Chapter 7 • SQL Procedure

 values(12345, 'John Doe', 123.45, #11/22/2003#)) by db;
quit;

INSERT Statement
Adds rows to a new or existing table or view.

Restriction: You cannot use INSERT INTO on a table that is accessed with an engine that does
not support UPDATE processing.

See: “Example 1: Creating a Table and Inserting Data into It” on page 245

Syntax
INSERT INTO table-name|sas/access-view|proc-sql-view <(column<, … column>)>

SET column=sql-expression
<, … column=sql-expression>

<SETcolumn=sql-expression <, … column=sql-expression>>;
INSERT INTO table-name|sas/access-view|proc-sql-view <(column<, … column>)>

VALUES (value <, … value>)
<… VALUES (value<, … value>)>;

INSERT INTO table-name|sas/access-view|proc-sql-view
<(column<, …column>)> query-expression;

Required Arguments
column

specifies the column into which you are inserting rows.

proc-sql-view
specifies a PROC SQL view into which you are inserting rows. proc-sql-view can be
a one-level name, a two-level libref.view name, or a physical pathname that is
enclosed in single quotation marks.

query-expression
See “query-expression” on page 332

sas/access-view
specifies a SAS/ACCESS view into which you are inserting rows.

sql-expression
See “sql-expression” on page 340
Restriction: You cannot use a logical operator (AND, OR, or NOT) in an

expression in a SET clause.

table-name
specifies a PROC SQL table into which you are inserting rows. table-name can be a
one-level name, a two-level libref.table name, or a physical pathname that is
enclosed in single quotation marks.

value
is a data value.

CAUTION:
Recursive table references can cause data integrity problems. Although it is
possible to recursively reference the target table of an INSERT statement, doing

INSERT Statement 241

so can cause data integrity problems and incorrect results. Constructions such as
the following should be avoided:

proc sql;
 insert into a
 select var1, var2
 from a
 where var1 > 0;

Details

Methods for Inserting Values
• The first form of the INSERT statement uses the SET clause, which specifies or

alters the values of a column. You can use more than one SET clause per INSERT
statement, and each SET clause can set the values in more than one column. Multiple
SET clauses are not separated by commas. If you specify an optional list of columns,
then you can set a value only for a column that is specified in the list of columns to
be inserted.

• The second form of the INSERT statement uses the VALUES clause. This clause
can be used to insert lists of values into a table. You can either give a value for each
column in the table or give values just for the columns specified in the list of column
names. One row is inserted for each VALUES clause. Multiple VALUES clauses are
not separated by commas. The order of the values in the VALUES clause matches
the order of the column names in the INSERT column list or, if no list was specified,
the order of the columns in the table.

• The third form of the INSERT statement inserts the results of a query expression into
a table. The order of the values in the query expression matches the order of the
column names in the INSERT column list or, if no list was specified, the order of the
columns in the table.

Note: If the INSERT statement includes an optional list of column names, then only
those columns are given values by the statement. Columns that are in the table but
not listed are given missing values.

Inserting Rows through Views
You can insert one or more rows into a table through a view, with some restrictions. See
“Updating PROC SQL and SAS/ACCESS Views” on page 168.

Adding Values to an Indexed Column
If an index is defined on a column and you insert a new row into the table, then that
value is added to the index. You can display information about indexes with

• the CONTENTS statement in the DATASETS procedure. For more information, see
the “CONTENTS Statement” in Chapter 15 of Base SAS Procedures Guide.

• the DICTIONARY.INDEXES table. For more information, see “Accessing SAS
System Information by Using DICTIONARY Tables” on page 144.

For more information about creating and using indexes, see the “CREATE INDEX
Statement” on page 228.

RESET Statement
Resets PROC SQL options without restarting the procedure.

242 Chapter 7 • SQL Procedure

See: “Example 5: Combining Two Tables” on page 254

Syntax
RESET <option(s)>;

Required Argument
RESET

The RESET statement enables you to add, drop, or change the options in PROC SQL
without restarting the procedure. For more information, see “PROC SQL Statement”
on page 215 for a description of the options.

SELECT Statement
Selects columns and rows of data from tables and views.

Restriction: The clauses in the SELECT statement must appear in the order shown.

See: Chapter 8, “SQL SELECT Statement Clauses,” on page 291
“table-expression” on page 357
“query-expression” on page 332

Syntax
SELECT <DISTINCT> object-item <, …object-item>

<INTO macro-variable-specification<, … macro-variable-specification>>
FROM from-list
<WHERE sql-expression>
<GROUP BYgroup-by-item<, … group-by-item>>
<HAVING sql-expression>
<ORDER BYorder-by-item<, … order-by-item>>;

UPDATE Statement
Modifies a column's values in existing rows of a table or view.

Restriction: You cannot use UPDATE on a table that is accessed by an engine that does not
support UPDATE processing.

See: “Example 3: Updating Data in a PROC SQL Table” on page 249

Syntax
UPDATE table-name|sas/access-view|proc-sql-view <ASalias>

SET column=sql-expression
<, … column=sql-expression>

<SETcolumn=sql-expression <, … column=sql-expression>>
<WHERE sql-expression>;

UPDATE Statement 243

Required Arguments
alias

assigns an alias to table-name, sas/access-view, or proc-sql-view.

column
specifies a column in table-name, sas/access-view, or proc-sql-view.

sas/access-view
specifies a SAS/ACCESS view.

sql-expression
See “sql-expression” on page 340
Restriction: You cannot use a logical operator (AND, OR, or NOT) in an

expression in a SET clause.

table-name
specifies a PROC SQL table. table-name can be a one-level name, a two-level
libref.table name, or a physical pathname that is enclosed in single quotation marks.

proc-sql-view
specifies a PROC SQL view. proc-sql-view can be a one-level name, a two-level
libref.view name, or a physical pathname that is enclosed in single quotation marks.

Details
You can update one or more rows of a table through a view, with some restrictions. See
“Updating PROC SQL and SAS/ACCESS Views” on page 168.

• Any column that is not modified retains its original values, except in certain queries
using the CASE expression. See “CASE Expression” on page 308 for a description
of CASE expressions.

• To add, drop, or modify a column's definition or attributes, use the ALTER TABLE
statement, described in “ALTER TABLE Statement” on page 224.

• In the SET clause, a column reference on the left side of the equal sign can also
appear as part of the expression on the right side of the equal sign. For example, you
could use this expression to give employees a $1,000 holiday bonus:

 set salary=salary + 1000

• If you omit the WHERE clause, then all the rows are updated. When you use a
WHERE clause, only the rows that meet the WHERE condition are updated.

• When you update a column and an index has been defined for that column, the
values in the updated column continue to have the index defined for them.

VALIDATE Statement
Checks the accuracy of a query expression's syntax and semantics without executing the expression.

Syntax
VALIDATE query-expression;

244 Chapter 7 • SQL Procedure

Required Argument
query-expression

See “query-expression” on page 332

Details
• The VALIDATE statement writes a message in the SAS log that states that the query

is valid. If there are errors, then VALIDATE writes error messages to the SAS log.

• The VALIDATE statement can also be included in applications that use the macro
facility. When used in such an application, VALIDATE returns a value that indicates
the query expression's validity. The value is returned through the macro variable
SQLRC (a short form for SQL return code). For example, if a SELECT statement is
valid, then the macro variable SQLRC returns a value of 0. See “Using the PROC
SQL Automatic Macro Variables” on page 157 for more information.

Examples: SQL Procedure

Example 1: Creating a Table and Inserting Data into It
Features: CREATE TABLE statement

column-modifier
INSERT statement

VALUES clause
SELECT clause
FROM clause

Table name: PROCLIB.PAYLIST

This example creates the table PROCLIB.PAYLIST and inserts data into it.

Program

libname proclib 'SAS-library';

proc sql;
 create table proclib.paylist
 (IdNum char(4),
 Gender char(1),
 Jobcode char(3),
 Salary num,
 Birth num informat=date7.
 format=date7.,
 Hired num informat=date7.
 format=date7.);

insert into proclib.paylist
 values('1639','F','TA1',42260,'26JUN70'd,'28JAN91'd)
 values('1065','M','ME3',38090,'26JAN54'd,'07JAN92'd)
 values('1400','M','ME1',29769.'05NOV67'd,'16OCT90'd)

Example 1: Creating a Table and Inserting Data into It 245

values('1561','M',null,36514,'30NOV63'd,'07OCT87'd)
 values('1221','F','FA3',.,'22SEP63'd,'04OCT94'd);

title 'PROCLIB.PAYLIST Table';

select *
 from proclib.paylist;

proc printto; run;

Program Description

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib 'SAS-library';

Create the PROCLIB.PAYLIST table. The CREATE TABLE statement creates
PROCLIB.PAYLIST with six empty columns. Each column definition indicates whether
the column is character or numeric. The number in parentheses specifies the width of the
column. INFORMAT= and FORMAT= assign date informats and formats to the Birth
and Hired columns.

proc sql;
 create table proclib.paylist
 (IdNum char(4),
 Gender char(1),
 Jobcode char(3),
 Salary num,
 Birth num informat=date7.
 format=date7.,
 Hired num informat=date7.
 format=date7.);

Insert values into the PROCLIB.PAYLIST table. The INSERT statement inserts data
values into PROCLIB.PAYLIST according to the position in the VALUES clause.
Therefore, in the first VALUES clause, 1639 is inserted into the first column, F into the
second column, and so on. Dates in SAS are stored as integers with 0 equal to January 1,
1960. Suffixing the date with a d is one way to use the internal value for dates.

insert into proclib.paylist
 values('1639','F','TA1',42260,'26JUN70'd,'28JAN91'd)
 values('1065','M','ME3',38090,'26JAN54'd,'07JAN92'd)
 values('1400','M','ME1',29769.'05NOV67'd,'16OCT90'd)

Include missing values in the data. The value null represents a missing value for the
character column Jobcode. The period represents a missing value for the numeric
column Salary.

values('1561','M',null,36514,'30NOV63'd,'07OCT87'd)
 values('1221','F','FA3',.,'22SEP63'd,'04OCT94'd);

Specify the title.

title 'PROCLIB.PAYLIST Table';

Display the entire PROCLIB.PAYLIST table. The SELECT clause selects columns from
PROCLIB.PAYLIST. The asterisk (*) selects all columns. The FROM clause specifies
PROCLIB.PAYLIST as the table to select from.

246 Chapter 7 • SQL Procedure

select *
 from proclib.paylist;

proc printto; run;

HTML Output

Output 7.1 Inserting Data into a Table

Example 2: Creating a Table from a Query's Result
Features: CREATE TABLE statement

AS query expression
SELECT clause

column alias
FORMAT= column-modifier
object-item

Other features: data set option
OBS=

Table names: PROCLIB.PAYROLL
PROCLIB.BONUS

Details

This example builds a column with an arithmetic expression and creates the
PROCLIB.BONUS table from the query's result.

proc sql outobs=10;
 title 'PROCLIB.PAYROLL';
 title2 'First 10 Rows Only';
 select * from proclib.payroll;
 title;

Example 2: Creating a Table from a Query's Result 247

Figure 7.2 Query Result from PROCLIB.PAYROLL

Program

libname proclib 'SAS-library';

proc sql;
 create table proclib.bonus as

 select IdNumber, Salary format=dollar8.,
 salary*.025 as Bonus format=dollar8.
 from proclib.payroll;

title 'BONUS Information';

select *
 from proclib.bonus(obs=10);

Program Description

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib 'SAS-library';

Create the PROCLIB.BONUS table. The CREATE TABLE statement creates the table
PROCLIB.BONUS from the result of the subsequent query.

proc sql;
 create table proclib.bonus as

Select the columns to include. The SELECT clause specifies that three columns will
be in the new table: IdNumber, Salary, and Bonus. FORMAT= assigns the DOLLAR8.
format to Salary. The Bonus column is built with the SQL expression salary*.025.

248 Chapter 7 • SQL Procedure

 select IdNumber, Salary format=dollar8.,
 salary*.025 as Bonus format=dollar8.
 from proclib.payroll;

Specify the title.

title 'BONUS Information';

Display the first 10 rows of the PROCLIB.BONUS table. The SELECT clause selects
columns from PROCLIB.BONUS. The asterisk (*) selects all columns. The FROM
clause specifies PROCLIB.BONUS as the table to select from. The OBS= data set
option limits the printing of the output to 10 rows.

select *
 from proclib.bonus(obs=10);

Output

Output 7.2 Creating a Table from a Query

Example 3: Updating Data in a PROC SQL Table
Features: ALTER TABLE statement

DROP clause
MODIFY clause

UPDATE statement
SET clause

CASE expression

Table name: EMPLOYEES

Example 3: Updating Data in a PROC SQL Table 249

This example updates data values in the EMPLOYEES table and drops a column.

Program to Create the Employee Table

proc sql;
 title 'Employees Table';
 select * from Employees;

Program Description

Display the entire EMPLOYEES table. The SELECT clause displays the table before the
updates. The asterisk (*) selects all columns for display. The FROM clause specifies
EMPLOYEES as the table to select from.

proc sql;
 title 'Employees Table';
 select * from Employees;

Output 7.3 Employees Table

Program to Update the Employee Table

proc sql;
update employees
 set salary=salary*
 case when jobcode like '__1' then 1.04
 else 1.025
 end;

alter table employees
 modify salary num format=dollar8.
 drop phone;

title 'Updated Employees Table';

 select * from employees;

Program Description

Update the values in the Salary column. The UPDATE statement updates the values in
EMPLOYEES. The SET clause specifies that the data in the Salary column be

250 Chapter 7 • SQL Procedure

multiplied by 1.04 when the job code ends with a 1 and 1.025 for all other job codes.
(The two underscores represent any character.) The CASE expression returns a value for
each row that completes the SET clause.

proc sql;
update employees
 set salary=salary*
 case when jobcode like '__1' then 1.04
 else 1.025
 end;

Modify the format of the Salary column and delete the Phone column. The ALTER
TABLE statement specifies EMPLOYEES as the table to alter. The MODIFY clause
permanently modifies the format of the Salary column. The DROP clause permanently
drops the Phone column.

alter table employees
 modify salary num format=dollar8.
 drop phone;

Specify the title.

title 'Updated Employees Table';

Display the entire updated EMPLOYEES table. The SELECT clause displays the
EMPLOYEES table after the updates. The asterisk (*) selects all columns.

 select * from employees;

Output

Output 7.4 Updated Employees Table

Example 4: Joining Two Tables
Features: FROM clause

table alias
inner join
joined-table component
PROC SQL statement option

Example 4: Joining Two Tables 251

NUMBER
WHERE clause

IN condition

Table names: PROCLIB.STAFF
PROCLIB.PAYROLL

Details

This example joins two tables in order to get more information about data that are
common to both tables.

proc sql outobs=10;
 title 'PROCLIB.STAFF';
 title2 'First 10 Rows Only';
 select * from proclib.staff;
 title;

Figure 7.3 PROCLIB.STAFF Table

proc sql outobs=10;
 title 'PROCLIB.PAYROLL';
 title2 'First 10 Rows Only';
 select * from proclib.payroll;
 title;

252 Chapter 7 • SQL Procedure

Figure 7.4 PROCLIB.PAYROLL Table

Program

libname proclib 'SAS-library';

proc sql number;

title 'Information for Certain Employees Only';

/* Select the columns to display. The SELECT clause selects the columns to
show in the output. */
 select Lname, Fname, City, State,
 IdNumber, Salary, Jobcode

from proclib.staff, proclib.payroll

where idnumber=idnum and idnum in
 ('1919', '1400', '1350', '1333');

Program Description

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib 'SAS-library';

Add row numbers to PROC SQL output. NUMBER adds a column that contains the
row number.

proc sql number;

Specify the title.

title 'Information for Certain Employees Only';

Example 4: Joining Two Tables 253

/* Select the columns to display. The SELECT clause selects the columns to
show in the output. */
 select Lname, Fname, City, State,
 IdNumber, Salary, Jobcode

Specify the tables from which to obtain the data. The FROM clause lists the tables to
select from.

from proclib.staff, proclib.payroll

Specify the join criterion and subset the query. The WHERE clause specifies that the
tables are joined on the ID number from each table. WHERE also further subsets the
query with the IN condition, which returns rows for only four employees.

where idnumber=idnum and idnum in
 ('1919', '1400', '1350', '1333');

Output 7.5 Information for Certain Employees Only

Example 5: Combining Two Tables
Features: DELETE statement

IS condition
RESET statement option

DOUBLE
UNION set operator

Table names: PROCLIB.NEWPAY
PROCLIB.PAYLIST
PROCLIB.PAYLIST2

Input Tables

This example creates a new table, PROCLIB.NEWPAY, by concatenating two other
tables: PROCLIB.PAYLIST and PROCLIB.PAYLIST2.

254 Chapter 7 • SQL Procedure

proc sql;
title 'PROCLIB.PAYLIST Table';
 select * from proclib.paylist;

Figure 7.5 PROCLIB.PAYLIST Table

proc sql;
title 'PROCLIB.PAYLIST2 Table';
 select * from proclib.PAYLIST2;
title;

Figure 7.6 PROCLIB.PAYLIST2 Table

Program

libname proclib 'SAS-library';

proc sql;
 create table proclib.newpay as
 select * from proclib.paylist
 union
 select * from proclib.paylist2;

delete
 from proclib.newpay
 where jobcode is missing or salary is missing;

reset double;

Example 5: Combining Two Tables 255

title 'Personnel Data';

select *
 from proclib.newpay;

Program Description

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib 'SAS-library';

Create the PROCLIB.NEWPAY table. The SELECT clauses select all the columns from
the tables that are listed in the FROM clauses. The UNION set operator concatenates the
query results that are produced by the two SELECT clauses.

proc sql;
 create table proclib.newpay as
 select * from proclib.paylist
 union
 select * from proclib.paylist2;

Delete rows with missing Jobcode or Salary values. The DELETE statement deletes
rows from PROCLIB.NEWPAY that satisfy the WHERE expression. The IS condition
specifies rows that contain missing values in the Jobcode or Salary column.

delete
 from proclib.newpay
 where jobcode is missing or salary is missing;

Reset the PROC SQL environment and double-space the output. RESET changes
the procedure environment without stopping and restarting PROC SQL. The DOUBLE
option double-spaces the output. (The DOUBLE option has no effect on ODS output.)

reset double;

Specify the title.

title 'Personnel Data';

Display the entire PROCLIB.NEWPAY table. The SELECT clause selects all columns
from the newly created table, PROCLIB.NEWPAY.

select *
 from proclib.newpay;

256 Chapter 7 • SQL Procedure

Output

Output 7.6 Personnel Data

Example 6: Reporting from DICTIONARY Tables
Features: DESCRIBE TABLE statement

DICTIONARY.table-name component

Table name: DICTIONARY.MEMBERS

This example uses DICTIONARY tables to show a list of the SAS files in a SAS library.
If you do not know the names of the columns in the DICTIONARY table that you are
querying, then use a DESCRIBE TABLE statement with the table.

Program

libname proclib 'SAS-library';

proc sql;
 describe table dictionary.members;

title 'SAS Files in the PROCLIB Library';

select memname, memtype
 from dictionary.members
 where libname='PROCLIB';

Program Description

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib 'SAS-library';

Example 6: Reporting from DICTIONARY Tables 257

List the column names from the DICTIONARY.MEMBERS table. DESCRIBE TABLE
writes the column names from DICTIONARY.MEMBERS to the SAS log.

proc sql;
 describe table dictionary.members;

Specify the title.

title 'SAS Files in the PROCLIB Library';

Display a list of files in the PROCLIB library. The SELECT clause selects the
MEMNAME and MEMTYPE columns. The FROM clause specifies
DICTIONARY.MEMBERS as the table to select from. The WHERE clause subsets the
output to include only those rows that have a libref of PROCLIB in the LIBNAME
column.

select memname, memtype
 from dictionary.members
 where libname='PROCLIB';

Log

277 options nodate pageno=1 source linesize=80 pagesize=60;
278
279 proc sql;
280 describe table dictionary.members;
NOTE: SQL table DICTIONARY.MEMBERS was created like:

create table DICTIONARY.MEMBERS
 (
 libname char(8) label='Library Name',
 memname char(32) label='Member Name',
 memtype char(8) label='Member Type',
 engine char(8) label='Engine Name',
 index char(32) label='Indexes',
 path char(1024) label='Path Name'
);

281 title 'SAS Files in the PROCLIB Library';
282
283 select memname, memtype
284 from dictionary.members
285 where libname='PROCLIB';

258 Chapter 7 • SQL Procedure

HTML Output

Output 7.7 SAS Files in the PROCLIB Library

Example 7: Performing an Outer Join
Features: joined-table component

left outer join
SELECT clause

COALESCE function
WHERE clause

CONTAINS condition

Table names: PROCLIB.PAYROLL
PROCLIB.PAYROLL2

Details

This example illustrates a left outer join of the PROCLIB.PAYROLL and
PROCLIB.PAYROLL2 tables.

proc sql outobs=10;
 title 'PROCLIB.PAYROLL';
 title2 'First 10 Rows Only';
 select * from proclib.payroll
 order by idnumber;
 title;

Example 7: Performing an Outer Join 259

Figure 7.7 PROCLIB.PAYROLL

proc sql;
 title 'PROCLIB.PAYROLL2';
 select * from proclib.payroll2
 order by idnum;
 title;

260 Chapter 7 • SQL Procedure

Figure 7.8 PROCLIB.PAYROLL2

Program Using OUTER JOIN Based on ID Number

libname proclib 'SAS-library';

proc sql outobs=10;

title 'Most Current Jobcode and Salary Information';

select p.IdNumber, p.Jobcode, p.Salary,
 p2.jobcode label='New Jobcode',
 p2.salary label='New Salary' format=dollar8.

from proclib.payroll as p left join proclib.payroll2 as p2

on p.IdNumber=p2.idnum;

Program Description

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib 'SAS-library';

Limit the number of output rows. OUTOBS= limits the output to 10 rows.

proc sql outobs=10;

Specify the title for the first query.

title 'Most Current Jobcode and Salary Information';

Example 7: Performing an Outer Join 261

Select the columns. The SELECT clause lists the columns to select. Some column
names are prefixed with a table alias because they are in both tables. LABEL= and
FORMAT= are column modifiers.

select p.IdNumber, p.Jobcode, p.Salary,
 p2.jobcode label='New Jobcode',
 p2.salary label='New Salary' format=dollar8.

Specify the type of join. The FROM clause lists the tables to join and assigns table
aliases. The keywords LEFT JOIN specify the type of join. The order of the tables in the
FROM clause is important. PROCLIB.PAYROLL is listed first and is considered the
“left” table. PROCLIB.PAYROLL2 is the “right” table.

from proclib.payroll as p left join proclib.payroll2 as p2

Specify the join criterion. The ON clause specifies that the join be performed based on
the values of the ID numbers from each table.

on p.IdNumber=p2.idnum;

Output for OUTER JOIN

As the output shows, all rows from the left table, PROCLIB.PAYROLL, are returned.
PROC SQL assigns missing values for rows in the left table, PAYROLL, that have no
matching values for IdNum in PAYROLL2.

Program Using COALESCE and LEFT JOIN

proc sql outobs=10;

title 'Most Current Jobcode and Salary Information';

select p.idnumber, coalesce(p2.jobcode,p.jobcode)
 label='Current Jobcode',

262 Chapter 7 • SQL Procedure

coalesce(p2.salary,p.salary) label='Current Salary'
 format=dollar8.

from proclib.payroll p left join proclib.payroll2 p2
 on p.IdNumber=p2.idnum;

Program Description

proc sql outobs=10;

Specify the title for the second query.

title 'Most Current Jobcode and Salary Information';

Select the columns and coalesce the Jobcode columns. The SELECT clause lists the
columns to select. COALESCE overlays the like-named columns. For each row,
COALESCE returns the first nonmissing value of either P2.JOBCODE or P.JOBCODE.
Because P2.JOBCODE is the first argument, if there is a nonmissing value for
P2.JOBCODE, COALESCE returns that value. Thus, the output contains the most recent
job code information for every employee. LABEL= assigns a column label.

select p.idnumber, coalesce(p2.jobcode,p.jobcode)
 label='Current Jobcode',

Coalesce the Salary columns. For each row, COALESCE returns the first nonmissing
value of either P2.SALARY or P.SALARY. Because P2.SALARY is the first argument,
if there is a nonmissing value for P2.SALARY, then COALESCE returns that value.
Thus, the output contains the most recent salary information for every employee.

coalesce(p2.salary,p.salary) label='Current Salary'
 format=dollar8.

Specify the type of join and the join criterion. The FROM clause lists the tables to join
and assigns table aliases. The keywords LEFT JOIN specify the type of join. The ON
clause specifies that the join is based on the ID numbers from each table.

from proclib.payroll p left join proclib.payroll2 p2
 on p.IdNumber=p2.idnum;

Example 7: Performing an Outer Join 263

Output for COALESCE and LEFT JOIN

Output 7.8 Most Current Jobcode and Salary Information

Program to Subset the Query

proc sql;

title 'Most Current Information for Ticket Agents';
 select p.IdNumber,
 coalesce(p2.jobcode,p.jobcode) label='Current Jobcode',
 coalesce(p2.salary,p.salary) label='Current Salary'
 from proclib.payroll p left join proclib.payroll2 p2
 on p.IdNumber=p2.idnum
 where p2.jobcode contains 'TA';

Program Description

Subset the query. The WHERE clause subsets the left join to include only those rows
containing the value TA.

proc sql;

title 'Most Current Information for Ticket Agents';
 select p.IdNumber,
 coalesce(p2.jobcode,p.jobcode) label='Current Jobcode',
 coalesce(p2.salary,p.salary) label='Current Salary'
 from proclib.payroll p left join proclib.payroll2 p2
 on p.IdNumber=p2.idnum
 where p2.jobcode contains 'TA';

264 Chapter 7 • SQL Procedure

Output for Subset of the Query

Output 7.9 Query Results with the Value TA

Example 8: Creating a View from a Query's Result
Features: CREATE VIEW statement

GROUP BY clause
SELECT clause

COUNT function
HAVING clause

Other features: AVG summary function
data set option

PW=

Table names: PROCLIB.PAYROLL
PROCLIB.JOBS

Details

This example creates the PROC SQL view PROCLIB.JOBS from the result of a query
expression.

proc sql outobs=10;
 title 'PROCLIB.PAYROLL';
 title2 'First 10 Rows Only';
 select * from proclib.payroll
 order by idnumber;
 title;

Example 8: Creating a View from a Query's Result 265

Figure 7.9 PROCLIB.PAYROLL

Program

libname proclib 'SAS-library';

proc sql;
 create view proclib.jobs(pw=red) as

select Jobcode,
 count(jobcode) as number label='Number',

avg(int((today()-birth)/365.25)) as avgage
 format=2. label='Average Age',
 avg(salary) as avgsal
 format=dollar8. label='Average Salary'

from payroll

group by jobcode
 having avgage ge 30;

title 'Current Summary Information for Each Job Category';
 title2 'Average Age Greater Than or Equal to 30';

select * from proclib.jobs(pw=red);

title2;

Program Description

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

266 Chapter 7 • SQL Procedure

libname proclib 'SAS-library';

Create the PROCLIB.JOBS view. CREATE VIEW creates the PROC SQL view
PROCLIB.JOBS. The PW= data set option assigns password protection to the data that
is generated by this view.

proc sql;
 create view proclib.jobs(pw=red) as

Select the columns. The SELECT clause specifies four columns for the view: Jobcode
and three columns, Number, AVGAGE, and AVGSAL, whose values are the products
functions. COUNT returns the number of nonmissing values for each job code because
the data is grouped by Jobcode. LABEL= assigns a label to the column.

select Jobcode,
 count(jobcode) as number label='Number',

Calculate the Avgage and Avgsal columns. The AVG summary function calculates
the average age and average salary for each job code.

avg(int((today()-birth)/365.25)) as avgage
 format=2. label='Average Age',
 avg(salary) as avgsal
 format=dollar8. label='Average Salary'

Specify the table from which the data is obtained. The FROM clause specifies
PAYROLL as the table to select from. PROC SQL assumes the libref of PAYROLL to
be PROCLIB because PROCLIB is used in the CREATE VIEW statement.

from payroll

Organize the data into groups and specify the groups to include in the output. The
GROUP BY clause groups the data by the values of Jobcode. Thus, any summary
statistics are calculated for each grouping of rows by value of Jobcode. The HAVING
clause subsets the grouped data and returns rows for job codes that contain an average
age of greater than or equal to 30.

group by jobcode
 having avgage ge 30;

Specify the titles.

title 'Current Summary Information for Each Job Category';
 title2 'Average Age Greater Than or Equal to 30';

Display the entire PROCLIB.JOBS view. The SELECT statement selects all columns
from PROCLIB.JOBS. PW=RED is necessary because the view is password protected.

select * from proclib.jobs(pw=red);

title2;

Example 8: Creating a View from a Query's Result 267

Output

Output 7.10 View Created from the Results of a Query

Example 9: Joining Three Tables
Features: FROM clause

joined-table component
WHERE clause

Table names: PROCLIB.STAFF2
PROCLIB.SCHEDULE2
PROCLIB.SUPERV2

268 Chapter 7 • SQL Procedure

Details

This example joins three tables and produces a report that contains columns from each
table.

Example Code 7.1 PROCLIB.STAFF2 Table

data proclib.staff2;
input IdNum $4. @7 Lname $12. @20 Fname $8. @30 City $10.
 @42 State $2. @50 Hphone $12.;
 datalines;
1106 MARSHBURN JASPER STAMFORD CT 203/781-1457
1430 DABROWSKI SANDRA BRIDGEPORT CT 203/675-1647
1118 DENNIS ROGER NEW YORK NY 718/383-1122
1126 KIMANI ANNE NEW YORK NY 212/586-1229
1402 BLALOCK RALPH NEW YORK NY 718/384-2849
1882 TUCKER ALAN NEW YORK NY 718/384-0216
1479 BALLETTI MARIE NEW YORK NY 718/384-8816
1420 ROUSE JEREMY PATERSON NJ 201/732-9834
1403 BOWDEN EARL BRIDGEPORT CT 203/675-3434
1616 FUENTAS CARLA NEW YORK NY 718/384-3329
;
run;

proc sql;
 title 'PROCLIB.STAFF2';
 select * from proclib.staff2;
 title;

Figure 7.10 PROCLIB.STAFF2

Example 9: Joining Three Tables 269

Example Code 7.2 PROCLIB.SCHEDULE2 Table

data proclib.schedule2;
 input flight $3. +5 date date7. +2 dest $3. +3 idnum $4.;
 format date date7.;
 informat date date7.;
 datalines;
132 01MAR94 BOS 1118
132 01MAR94 BOS 1402
219 02MAR94 PAR 1616
219 02MAR94 PAR 1478
622 03MAR94 LON 1430
622 03MAR94 LON 1882
271 04MAR94 NYC 1430
271 04MAR94 NYC 1118
579 05MAR94 RDU 1126
579 05MAR94 RDU 1106
;
run;

proc sql;
 title 'PROCLIB.SCHEDULE2';
 select * from proclib.schedule2;
 title;

Figure 7.11 PROCLIB.SCHEDULE2

Example Code 7.3 PROCLIB.SUPERV2 Table

data proclib.superv2;
 input supid $4. +8 state $2. +5 jobcat $2.;
 label supid='Supervisor Id' jobcat='Job Category';

270 Chapter 7 • SQL Procedure

 datalines;
1417 NJ NA
1352 NY NA
1106 CT PT
1442 NJ PT
1118 NY PT
1405 NJ SC
1564 NY SC
1639 CT TA
1126 NY TA
1882 NY ME
;
run;

proc sql;
 title 'PROCLIB.SUPERV2';
 select * from proclib.superv2
 title;

Figure 7.12 PROCLIB.SUPERV2

Program

libname proclib 'SAS-library';

proc sql;
 title 'All Flights for Each Supervisor';
 select s.IdNum, Lname, City 'Hometown', Jobcat,
 Flight, Date

from proclib.schedule2 s, proclib.staff2 t, proclib.superv2 v

where s.idnum=t.idnum and t.idnum=v.supid;

Example 9: Joining Three Tables 271

Program Description

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib 'SAS-library';

Select the columns. The SELECT clause specifies the columns to select. IdNum is
prefixed with a table alias because it appears in two tables.

proc sql;
 title 'All Flights for Each Supervisor';
 select s.IdNum, Lname, City 'Hometown', Jobcat,
 Flight, Date

Specify the tables to include in the join. The FROM clause lists the three tables for the
join and assigns an alias to each table.

from proclib.schedule2 s, proclib.staff2 t, proclib.superv2 v

Specify the join criteria. The WHERE clause specifies the columns that join the tables.
The STAFF2 and SCHEDULE2 tables have an IdNum column, which has related values
in both tables. The STAFF2 and SUPERV2 tables have the IdNum and SUPID columns,
which have related values in both tables.

where s.idnum=t.idnum and t.idnum=v.supid;

Output

Output 7.11 ID Values from All Three Tables Are Included

Example 10: Querying an In-Line View
Features: FROM clause

in-line view

Table names: PROCLIB.STAFF2
PROCLIB.SCHEDULE2
PROCLIB.SUPERV2

272 Chapter 7 • SQL Procedure

This example shows an alternative way to construct the query that is explained in
“Example 9: Joining Three Tables” on page 268 by joining one of the tables with the
results of an in-line view. The example also shows how to rename columns with an in-
line view.

Program

libname proclib 'SAS-library';

proc sql;
 title 'All Flights for Each Supervisor';
 select three.*, v.jobcat

from (select lname, s.idnum, city, flight, date
 from proclib.schedule2 s, proclib.staff2 t
 where s.idnum=t.idnum)

as three (Surname, Emp_ID, Hometown,
 FlightNumber, FlightDate),

proclib.superv2 v
 where three.Emp_ID=v.supid;

Program Description

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib 'SAS-library';

Select the columns. The SELECT clause selects all columns that are returned by the in-
line view (which will have the alias Three assigned to it), plus one column from the third
table (which will have the alias V assigned to it).

proc sql;
 title 'All Flights for Each Supervisor';
 select three.*, v.jobcat

Specify the in-line query. Instead of including the name of a table or view, the FROM
clause includes a query that joins two of the three tables. In the in-line query, the
SELECT clause lists the columns to select. IdNum is prefixed with a table alias because
it appears in both tables. The FROM clause lists the two tables for the join and assigns
an alias to each table. The WHERE clause specifies the columns that join the tables. The
STAFF2 and SCHEDULE2 tables have an IdNum column, which has related values in
both tables.

from (select lname, s.idnum, city, flight, date
 from proclib.schedule2 s, proclib.staff2 t
 where s.idnum=t.idnum)

Specify an alias for the query and names for the columns. The alias Three refers to
the results of the in-line view. The names in parentheses become the names for the
columns in the view.

as three (Surname, Emp_ID, Hometown,
 FlightNumber, FlightDate),

Example 10: Querying an In-Line View 273

Join the results of the in-line view with the third table. The WHERE clause specifies
the columns that join the table with the in-line view. Note that the WHERE clause
specifies the renamed Emp_ID column from the in-line view.

proclib.superv2 v
 where three.Emp_ID=v.supid;

Output

Output 7.12 Query of an In-Line View

Example 11: Retrieving Values with the SOUNDS-LIKE Operator
Features: ORDER BY clause

SOUNDS-LIKE operator

Table name: PROCLIB.STAFF

This example returns rows based on the functionality of the SOUNDS-LIKE operator in
a WHERE clause. The SOUNDS-LIKE operator is based on the SOUNDEX algorithm
for identifying words that sound alike. The SOUNDEX algorithm is English-biased and
is less useful for languages other than English. For more information about the
“SOUNDEX Function” in SAS Functions and CALL Routines: Reference algorithm, see
SAS Functions and CALL Routines: Reference.

Details

proc sql outobs=10;
 title 'PROCLIB.STAFF';
 title2 'First 10 Rows Only';
 select * from proclib.staff;
 title;

274 Chapter 7 • SQL Procedure

Figure 7.13 PROCLIB.STAFF

Program to Select Names That Sound like 'Johnson'

libname proclib 'SAS-library';

proc sql;
 title "Employees Whose Last Name Sounds Like 'Johnson'";
 select idnum, upcase(lname), fname
 from proclib.staff

where lname=*"Johnson"
 order by 2;

Program Description

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib 'SAS-library';

Select the columns and the table from which the data is obtained. The SELECT
clause selects all columns from the table in the FROM clause, PROCLIB.STAFF.

proc sql;
 title "Employees Whose Last Name Sounds Like 'Johnson'";
 select idnum, upcase(lname), fname
 from proclib.staff

Subset the query and sort the output. The WHERE clause uses the SOUNDS-LIKE
operator to subset the table by those employees whose last name sounds like Johnson.
The ORDER BY clause orders the output by the second column.

Example 11: Retrieving Values with the SOUNDS-LIKE Operator 275

where lname=*"Johnson"
 order by 2;

Output for Names That Sound like 'Johnson'

Output 7.13 Employees Whose Last Name Sounds like 'Johnson'

Program to Select Names That Sound like 'Sanders'

SOUNDS-LIKE is useful, but there might be instances where it does not return every
row that seems to satisfy the condition. PROCLIB.STAFF has an employee with the last
name SANDERS and an employee with the last name SANYERS. The algorithm does
not find SANYERS, but it does find SANDERS and SANDERSON.

proc sql;
title "Employees Whose Last Name Sounds Like 'Sanders'";
 select *
 from proclib.staff
 where lname=*"Sanders"
 order by 2;

Output for Names That Sound like 'Sanders'

Output 7.14 Employees Whose Last Name Sounds like 'Sanders'

Example 12: Joining Two Tables and Calculating a New Value
Features: GROUP BY clause

HAVING clause

276 Chapter 7 • SQL Procedure

SELECT clause
ABS function
FORMAT= column-modifier
LABEL= column-modifier
MIN summary function
** operator, exponentiation
SQRT function

Table names: STORES
HOUSES

Details

This example joins two tables in order to compare and analyze values that are unique to
each table yet have a relationship with a column that is common to both tables.

proc sql;
 title 'STORES Table';
 title2 'Coordinates of Stores';
 select * from stores;
 title 'HOUSES Table';
 title2 'Coordinates of Houses';
 select * from houses;
title;

The tables contain X and Y coordinates that represent the location of the stores and
houses.

Example 12: Joining Two Tables and Calculating a New Value 277

Figure 7.14 STORES and HOUSES Tables

Program

proc sql;
 title 'Each House and the Closest Store';
 select house, store label='Closest Store',
 sqrt((abs(s.x-h.x)**2)+(abs(h.y-s.y)**2)) as dist
 label='Distance' format=4.2
 from stores s, houses h

group by house
 having dist=min(dist);

Program Description

Specify the query. The SELECT clause specifies three columns: HOUSE, STORE, and
DIST. The arithmetic expression uses the square root function (SQRT) to create the
values of DIST, which contain the distance from HOUSE to STORE for each row. The
double asterisk (**) represents exponentiation. LABEL= assigns a label to STORE and
to DIST.

proc sql;
 title 'Each House and the Closest Store';
 select house, store label='Closest Store',
 sqrt((abs(s.x-h.x)**2)+(abs(h.y-s.y)**2)) as dist

278 Chapter 7 • SQL Procedure

 label='Distance' format=4.2
 from stores s, houses h

Organize the data into groups and subset the query. The minimum distance from
each house to all the stores is calculated because the data are grouped by house. The
HAVING clause specifies that each row be evaluated to determine whether its value of
DIST is the same as the minimum distance from that house to any store.

group by house
 having dist=min(dist);

Output

Note that two stores are tied for shortest distance from house2.

Output 7.15 New Value, Distance, Calculated from Two Tables

Example 13: Producing All the Possible Combinations of the Values in a
Column

Features: CASE expression
joined-table component
Cross join
SELECT clause

DISTINCT keyword

Table names: PROCLIB.MARCH
FLIGHTS

Details

This example joins a table with itself to get all the possible combinations of the values in
a column.

proc sql outobs=10;
 title 'PROCLIB.MARCH';
 title2 'First 10 Rows Only';
 select * from proclib.march;

Example 13: Producing All the Possible Combinations of the Values in a Column 279

title;

Figure 7.15 PROCLIB.MARCH

Program to Create the Flights Table

libname proclib 'SAS-library';

proc sql;
 create table flights as
 select distinct dest
 from proclib.march;

title 'Cities Serviced by the Airline';

select * from flights;

Program Description

Declare the PROCLIB library. The PROCLIB library is used in these examples to store
created tables.

libname proclib 'SAS-library';

Create the FLIGHTS table. The CREATE TABLE statement creates the table FLIGHTS
from the output of the query. The SELECT clause selects the unique values of Dest.
DISTINCT specifies that only one row for each value of city be returned by the query
and stored in the table FLIGHTS. The FROM clause specifies PROCLIB.MARCH as
the table to select from.

proc sql;
 create table flights as

280 Chapter 7 • SQL Procedure

 select distinct dest
 from proclib.march;

Specify the title.

title 'Cities Serviced by the Airline';

Display the entire FLIGHTS table.

select * from flights;

Output for Flights Table

Output 7.16 Cities Serviced by the Airline

Program Using Conventional Join

proc sql;

title 'All Possible Connections';

select f1.Dest, case
 when f1.dest ne ' ' then 'to and from'
 end,
 f2.Dest

from flights as f1, flights as f2

where f1.dest < f2.dest

order by f1.dest;

Program Description

proc sql;

Specify the title.

title 'All Possible Connections';

Example 13: Producing All the Possible Combinations of the Values in a Column 281

Select the columns. The SELECT clause specifies three columns for the output. The
prefixes on DEST are table aliases to specify which table to take the values of Dest from.
The CASE expression creates a column that contains the character string to and from.

select f1.Dest, case
 when f1.dest ne ' ' then 'to and from'
 end,
 f2.Dest

Specify the type of join. The FROM clause joins FLIGHTS with itself and creates a
table that contains every possible combination of rows (a Cartesian product). The table
contains two rows for each possible route. For example, PAR <-> WAS and WAS <->
PAR.

from flights as f1, flights as f2

Specify the join criterion. The WHERE clause subsets the internal table by choosing
only those rows where the name in F1.Dest sorts before the name in F2.Dest. Thus, there
is only one row for each possible route.

where f1.dest < f2.dest

Sort the output. ORDER BY sorts the result by the values of F1.Dest.

order by f1.dest;

282 Chapter 7 • SQL Procedure

Output Using Conventional Join

Output 7.17 All Possible Connections

Program Using Cross Join

/* */
proc sql;
 title 'All Possible Connections';
 select f1.Dest, case
 when f1.dest ne ' ' then 'to and from'
 end,
 f2.Dest
 from flights as f1 cross join flights as f2

Example 13: Producing All the Possible Combinations of the Values in a Column 283

 where f1.dest < f2.dest
 order by f1.dest;

Program Description

Specify a cross join. Because a cross join is functionally the same as a Cartesian
product join, the cross join syntax can be substituted for the conventional join syntax.

/* */
proc sql;
 title 'All Possible Connections';
 select f1.Dest, case
 when f1.dest ne ' ' then 'to and from'
 end,
 f2.Dest
 from flights as f1 cross join flights as f2
 where f1.dest < f2.dest
 order by f1.dest;

284 Chapter 7 • SQL Procedure

Output Using Cross Join

Output 7.18 All Possible Connections

Example 14: Matching Case Rows and Control Rows
Features: joined-table component

Table names: MATCH_11
MATCH

This example uses a table that contains data for a case-control study. Each row contains
information for a case or a control. To perform statistical analysis, you need a table with
one row for each case-control pair. PROC SQL joins the table with itself in order to

Example 14: Matching Case Rows and Control Rows 285

match the cases with their appropriate controls. After the rows are matched, differencing
can be performed on the appropriate columns.

The input table Appendix 3, “MATCH_11,” in Base SAS Procedures Guide contains one
row for each case and one row for each control. Pair contains a number that associates
the case with its control. Low is 0 for the controls and 1 for the cases. The remaining
columns contain information about the cases and controls.

options ls=120 nodate pageno=1;
proc sql outobs=10;
 title 'MATCH_11 Table';
 title2 'First 10 Rows Only';
 select * from match_11;

Figure 7.16 MATCH_11 Table, First 10 Rows

Program

proc sql;
 create table match as
 select
 one.Low,
 one.Pair,
 (one.lwt - two.lwt) as Lwt_d,
 (one.smoke - two.smoke) as Smoke_d,
 (one.ptd - two.ptd) as Ptd_d,
 (one.ht - two.ht) as Ht_d,
 (one.ui - two.ui) as UI_d

from match_11 one, match_11 two
 where (one.pair=two.pair and one.low>two.low);

 title 'Differences for Cases and Controls';

286 Chapter 7 • SQL Procedure

select *
 from match(obs=5);

Program Description

Create the MATCH table. The SELECT clause specifies the columns for the table
MATCH. SQL expressions in the SELECT clause calculate the differences for the
appropriate columns and create new columns.

proc sql;
 create table match as
 select
 one.Low,
 one.Pair,
 (one.lwt - two.lwt) as Lwt_d,
 (one.smoke - two.smoke) as Smoke_d,
 (one.ptd - two.ptd) as Ptd_d,
 (one.ht - two.ht) as Ht_d,
 (one.ui - two.ui) as UI_d

Specify the type of join and the join criterion. The FROM clause lists the table
MATCH_11 twice. Thus, the table is joined with itself. The WHERE clause returns only
the rows for each pair that show the difference when the values for control are subtracted
from the values for case.

from match_11 one, match_11 two
 where (one.pair=two.pair and one.low>two.low);

Specify the title.

 title 'Differences for Cases and Controls';

Display the first five rows of the MATCH table. The SELECT clause selects all the
columns from MATCH. The OBS= data set option limits the printing of the output to
five rows.

select *
 from match(obs=5);

Example 14: Matching Case Rows and Control Rows 287

Output

Output 7.19 Differences for Cases and Controls

Example 15: Counting Missing Values with a SAS Macro
Features: COUNT function

Table name: SURVEY

This example uses a SAS macro to create columns. The SAS macro is not explained
here. See SAS Macro Language: Reference for information about SAS macros.

“SURVEY” on page 392 contains data from a questionnaire about diet and exercise
habits. SAS enables you to use a special notation for missing values. In the EDUC
column, the .x notation indicates that the respondent gave an answer that is not valid,
and .n indicates that the respondent did not answer the question. A period as a missing
value indicates a data entry error.

Program

%macro countm(col);
 count(&col) "Valid Responses for &col",

nmiss(&col) "Missing or NOT VALID Responses for &col",

count(case
 when &col=.n then "count me"
 end) "Coded as NO ANSWER for &col",
 count(case
 when &col=.x then "count me"
 end) "Coded as NOT VALID answers for &col",
 count(case
 when &col=. then "count me"
 end) "Data Entry Errors for &col"
%mend;

proc sql;
 title 'Counts for Each Type of Missing Response';
 select count(*) "Total No. of Rows",

288 Chapter 7 • SQL Procedure

 %countm(educ)
 from survey;

Program Description

Count the nonmissing responses. The COUNTM macro uses the COUNT function to
perform various counts for a column. Each COUNT function uses a CASE expression to
select the rows to be counted. The first COUNT function uses only the column as an
argument to return the number of nonmissing rows.

%macro countm(col);
 count(&col) "Valid Responses for &col",

Count missing or invalid responses. The NMSS function returns the number of rows
for which the column has any type of missing value: .n, .x, or a period.

nmiss(&col) "Missing or NOT VALID Responses for &col",

Count the occurrences of various sources of missing or invalid responses. The last
three COUNT functions use CASE expressions to count the occurrences of the three
notations for missing values. The “count me” character string gives the COUNT function
a nonmissing value to count.

count(case
 when &col=.n then "count me"
 end) "Coded as NO ANSWER for &col",
 count(case
 when &col=.x then "count me"
 end) "Coded as NOT VALID answers for &col",
 count(case
 when &col=. then "count me"
 end) "Data Entry Errors for &col"
%mend;

Use the COUNTM macro to create the columns. The SELECT clause specifies the
columns that are in the output. COUNT(*) returns the total number of rows in the table.
The COUNTM macro uses the values of the EDUC column to create the columns that
are defined in the macro.

proc sql;
 title 'Counts for Each Type of Missing Response';
 select count(*) "Total No. of Rows",
 %countm(educ)
 from survey;

Example 15: Counting Missing Values with a SAS Macro 289

Output

Output 7.20 Counts for Each Type of Missing Response

290 Chapter 7 • SQL Procedure

Chapter 8

SQL SELECT Statement Clauses

Dictionary . 291
SELECT Clause . 291
INTO Clause . 293
FROM Clause . 299
WHERE Clause . 300
GROUP BY Clause . 301
HAVING Clause . 302
ORDER BY Clause . 303

Dictionary

SELECT Clause
Lists the columns that will appear in the output.

See: “column-definition” on page 310
“Example 1: Creating a Table and Inserting Data into It” on page 245
“Example 2: Creating a Table from a Query's Result” on page 247

Syntax
SELECT <DISTINCT> object-item <, … object-item>

Required Arguments
alias

assigns a temporary, alternate name to the column.

DISTINCT
eliminates duplicate rows. The DISTINCT argument is identical to UNIQUE.
Note: DISTINCT works on the internal or stored value, not necessarily on the value

as it is displayed. Numeric precision can cause multiple rows to be returned with
values that appear to be the same.

Tips:

291

A row is considered a duplicate when all of its values are the same as the values
of another row. The DISTINCT argument applies to all columns in the SELECT
list. One row is displayed for each existing combination of values.
If available, PROC SQL uses index files when processing SELECT DISTINCT
statements.

Example: “Example 13: Producing All the Possible Combinations of the Values in a
Column” on page 279

object-item
is one of the following:

*
represents all columns in the tables or views that are listed in the FROM clause.

case-expression <AS alias>
derives a column from a CASE expression. See “CASE Expression” on page
308.

column-name<AS alias><column-modifier <… column-modifier>>
names a single column. See “column-name” on page 313 and “column-
modifier” on page 311.

sql-expression<AS alias><column-modifier <… column-modifier>>
derives a column from an sql-expression. See “sql-expression” on page 340 and
“column-modifier” on page 311.

table-name.*
specifies all columns in the PROC SQL table that is specified in table-name.

table-alias.*
specifies all columns in the PROC SQL table that has the alias that is specified in
table-alias.

view-name.*
specifies all columns in the SAS view that is specified in view-name.

view-alias.*
specifies all columns in the SAS view that has the alias that is specified in view-
alias.

UNIQUE
eliminates duplicate rows. The UNIQUE argument is identical to DISTINCT.

Note: Although the UNIQUE argument is identical to DISTINCT, it is not an ANSI
standard.

Details

Asterisk (*) Notation
The asterisk (*) represents all columns of the table or tables listed in the FROM clause.
When an asterisk is not prefixed with a table name, all the columns from all tables in the
FROM clause are included; when it is prefixed (for example, table-name.* or table-
alias.*), all the columns from that table only are included.

Note: A warning will occur if you create an output table using the SELECT * syntax
when columns with the same name exist in the multiple tables that are listed on the
FROM clause. You can avoid the warning by using one of the following actions:

• Individually list the desired columns in the SELECT statement at the same time
as you omit the duplicate column names.

292 Chapter 8 • SQL SELECT Statement Clauses

• Use the RENAME= and DROP= data set options. In this example, the ID column
is renamed tmpid.

proc sql;
 create table all(drop=tmpid) as
 select * from
 one, two(rename=(id=tmpid))
 where one.id=two.tmpid;
quit;

If table aliases are used, place the RENAME= data set option after the table name
and before the table alias. You can omit the DROP= data set option if you want
to keep the renamed column in the final output table.

Column Aliases
A column alias is a temporary, alternate name for a column. Aliases are specified in the
SELECT clause to name or rename columns so that the result table is clearer or easier to
read. Aliases are often used to name a column that is the result of an arithmetic
expression or summary function. An alias is one word only. If you need a longer column
name, then use the LABEL= column-modifier, as described in “column-modifier” on
page 311. The keyword AS is required with a column alias to distinguish the column
alias from column names in the SELECT clause.

Column aliases are optional, and each column name in the SELECT clause can have an
alias. After you assign an alias to a column, you can use the alias to refer to that column
in other clauses.

If you use a column alias when creating a PROC SQL view, then the alias becomes the
permanent name of the column for each execution of the view.

Note: For the maximum portability of SQL code that is used outside of the SAS SQL
procedure, avoid writing code that refers to column aliases in a WHERE clause,
GROUP BY clause, or HAVING clause. For more information, see “Column Alias
Exceptions” on page 376.

INTO Clause
Stores the value of one or more columns for use later in another PROC SQL query or SAS statement.

Restriction: An INTO clause cannot be used in a CREATE TABLE statement.

See: “Using the PROC SQL Automatic Macro Variables” on page 157

Syntax
INTO macro-variable-specification
<, … macro-variable-specification>

Required Arguments
macro-variable

specifies a SAS macro variable that stores the values of the rows that are returned.

macro-variable-specification
is one of the following:

INTO Clause 293

macro-variable<SEPARATED BY 'character(s)'<NOTRIM>>
stores the values that are returned into a single macro variable.

macro-variable<TRIMMED>
stores the values that are returned into a single macro variable.

macro-variable-1 - macro-variable-n<NOTRIM>
stores the values that are returned into a range of macro variables.
Tip: When you specify a range of macro variables, the SAS Macro Facility

creates only the number of macro variables that are needed. For example, if
you specify :var1-:var9999 and only 55 variables are needed,
only :var1-:var55 is created. The SQLOBS automatic variable is useful if
a subsequent part of your program needs to know how many variables were
actually created. In this example, SQLOBS would have the value of 55.

macro-variable-1 - <NOTRIM>
stores the values that are returned into a range of macro variables.
Tip: If you do not know how many variables you might need, you can create a

macro variable range without specifying an upper bound for the range. The
SQLOBS macro variable can be used if a subsequent part of your program
needs to know how many variables were actually created.

NOTRIM
protects the leading and trailing blanks from being deleted from values that are
stored in a range of macro variables or multiple values that are stored in a single
macro variable.

SEPARATED BY 'character'
specifies a character that separates the values of the rows.

TRIMMED
trims the leading and trailing blanks from values that are stored in a single macro
variable.

Details
• Use the INTO clause only in the outer query of a SELECT statement, not in a

subquery.

• When storing a value in a single macro variable, PROC SQL preserves leading or
trailing blanks. The TRIMMED option can be used to trim the leading and trailing
blanks from values that are stored in a single macro variable. However, if values are
stored in a range of macro variables, or if the SEPARATED BY option is used to
store multiple values in a single macro variable, PROC SQL trims leading or trailing
blanks unless you specify the NOTRIM option.

• You can put multiple rows of the output in macro variables. You can use the PROC
SQL macro variable SQLOBS to determine the number of rows that are produced by
a query expression. For more information about SQLOBS, see “Using the PROC
SQL Automatic Macro Variables” on page 157.

Note: The SQLOBS macro variable is assigned a value after the SELECT statement
executes.

• Values assigned by the INTO clause use the BEST8. format.

Example: INTO Clause
These examples use the “PROCLIB.HOUSES” on page 382 table:

294 Chapter 8 • SQL SELECT Statement Clauses

title 'PROCLIB.HOUSES Table';
proc sql;
 select * from proclib.houses;

Output 8.1 PROCLIB.HOUSES Table

With the macro-variable-specification, you can do the following:

• You can create macro variables based on the first row of the result.

proc sql noprint;
 select style, sqfeet
 into :style, :sqfeet
 from proclib.houses;

%put &style &sqfeet;

The results are written to the SAS log:

1 proc sql noprint;
2 select style, sqfeet
3 into :style, :sqfeet
4 from proclib.houses;
5
6 %put &style &sqfeet;
CONDO 900

• You can use the TRIMMED option to remove leading and trailing blanks from
values that are stored in a single macro variable.

proc sql noprint;
 select distinct style, sqfeet
 into :s1, :s2 TRIMMED
 from proclib.houses;

INTO Clause 295

%put &s1 &s2;
%put There were &sqlobs distinct values.;

The results are written to the SAS log:

1 proc sql noprint;
2 select distinct style, sqfeet
3 into :s1, :s2 TRIMMED
4 from proclib.houses;
5 %put &s1 &s2;
CONDO 900
6 %put There were &sqlobs distinct values.;
There were 1 distinct values.

• You can create one new macro variable per row in the result of the SELECT
statement. This example shows how you can request more values for one column
than for another. The hyphen is used in the INTO clause to imply a range of macro
variables. You can use either of the keywords THROUGH or THRU instead of a
hyphen.

The following PROC SQL step puts the values from the first four rows of the
PROCLIB.HOUSES table into macro variables:

proc sql noprint;
select distinct Style, SqFeet
 into :style1 - :style3, :sqfeet1 - :sqfeet4
 from proclib.houses;

%put &style1 &sqfeet1;
%put &style2 &sqfeet2;
%put &style3 &sqfeet3;
%put &sqfeet4;

The %PUT statements write the results to the SAS log:

1 proc sql noprint;
2 select distinct style, sqfeet
3 into :style1 - :style3, :sqfeet1 - :sqfeet4
4 from proclib.houses;
5
6 %put &style1 &sqfeet1;
CONDO 900
7 %put &style2 &sqfeet2;
CONDO 1000
8 %put &style3 &sqfeet3;
RANCH 1200
9 %put &sqfeet4;
1400

• You can use a hyphen in the INTO clause to specify a range without an upper bound.

proc sql noprint;
select distinct Style, SqFeet
 into :style1 - , :sqfeet1 -
 from proclib.houses;

%put &style1 &sqfeet1;
%put &style2 &sqfeet2;

296 Chapter 8 • SQL SELECT Statement Clauses

%put &style3 &sqfeet3;
%put &sqfeet4;

The results are written to the SAS log:

1 proc sql noprint;
2 select distinct Style, SqFeet
3 into :style1 - , :sqfeet1 -
4 from proclib.houses;
5
6 %put &style1 &sqfeet1;
CONDO 900
7 %put &style2 &sqfeet2;
CONDO 1000
8 %put &style3 &sqfeet3;
RANCH 1200
9 %put &sqfeet4;
1400

• You can concatenate the values of one column into one macro variable. This form is
useful for building up a list of variables or constants. The SQLOBS macro variable is
useful to reveal how many distinct variables there were in the data processed by the
query.

proc sql noprint;
 select distinct style
 into :s1 separated by ','
 from proclib.houses;
%put &s1;
%put There were &sqlobs distinct values.;

The results are written to the SAS log:

3 proc sql noprint;
4 select distinct style
5 into :s1 separated by ','
6 from proclib.houses;
7
8 %put &s1

CONDO,RANCH,SPLIT,TWOSTORY
There were 4 distinct values.

• You can use leading zeros in order to create a range of macro variable names, as
shown in the following example:

proc sql noprint;
 select SqFeet
 into :sqfeet01 - :sqfeet10
 from proclib.houses;

%put &sqfeet01 &sqfeet02 &sqfeet03 &sqfeet04 &sqfeet05;
%put &sqfeet06 &sqfeet07 &sqfeet08 &sqfeet09 &sqfeet10;

INTO Clause 297

The results are written to the SAS log:

 11 proc sql noprint;
 12 select sqfeet
 13 into :sqfeet01 - :sqfeet10
 14 from proclib.houses;

15 %put &sqfeet01 &sqfeet02 &sqfeet03 &sqfeet04 &sqfeet05;
900 1000 1200 1400 1600
16 %put &sqfeet06 &sqfeet07 &sqfeet08 &sqfeet09 &sqfeet10;
1800 2100 3000 1940 1860

• You can prevent leading and trailing blanks from being trimmed from values that are
stored in macro variables. By default, when storing values in a range of macro
variables, or when storing multiple values in a single macro variable (with the
SEPARATED BY option), PROC SQL trims the leading and trailing blanks from the
values before creating the macro variables. If you do not want leading and trailing
blanks to be trimmed, specify the NOTRIM option, as shown in the following
example:

proc sql noprint;
 select style, sqfeet
 into :style1 - :style4 notrim,
 :sqfeet separated by ',' notrim
 from proclib.houses;

%put *&style1* *&sqfeet*;
%put *&style2* *&sqfeet*;
%put *&style3* *&sqfeet*;
%put *&style4* *&sqfeet*;

The results are written to the SAS log, as shown in the following output:

3 proc sql noprint;
4 select style, sqfeet
5 into :style1 - :style4 notrim,
6 :sqfeet separated by ',' notrim
7 from proclib.houses;
8
9 %put *&style1* *&sqfeet*;
*CONDO * * 900, 1000, 1200, 1400, 1600, 1800, 2100,
 3000, 1940, 1860*
10 %put *&style2* *&sqfeet*;
*CONDO * * 900, 1000, 1200, 1400, 1600, 1800, 2100,
 3000, 1940, 1860**
11 %put *&style3* *&sqfeet*;
*RANCH * * 900, 1000, 1200, 1400, 1600, 1800, 2100,
 3000, 1940, 1860**
12 %put *&style4* *&sqfeet*;
*RANCH * * 900, 1000, 1200, 1400, 1600, 1800, 2100,
 3000, 1940, 1860**</log>
</logBlock>

298 Chapter 8 • SQL SELECT Statement Clauses

FROM Clause
Specifies source tables or views.

See: “Example 1: Creating a Table and Inserting Data into It” on page 245
“Example 4: Joining Two Tables” on page 251
“Example 9: Joining Three Tables” on page 268
“Example 10: Querying an In-Line View” on page 272

Syntax
FROM from-list

Required Arguments
alias

specifies a temporary, alternate name for a table, view, or in-line view that is
specified in the FROM clause.

column
names the column that appears in the output. The column names that you specify are
matched by position to the columns in the output.

from-list
is one of the following:

table-name <<AS>alias>
names a single PROC SQL table. table-name can be a one-level name, a two-
level libref.table name, or a physical pathname that is enclosed in single
quotation marks.

view-name <<AS>alias>
names a single SAS view. view-name can be a one-level name, a two-level
libref.view name, or a physical pathname that is enclosed in single quotation
marks.

joined-table
specifies a join. See “joined-table” on page 316.

(query-expression) <<AS>alias> <(column<, …column>)>
specifies an in-line view. See “query-expression” on page 332.

CONNECTION TO
specifies a DBMS table. See “CONNECTION TO” on page 313.

Note: With table-name and view-name, you can use data set options by placing
them in parentheses immediately after table-name or view-name. For more
information, see “Using SAS Data Set Options with PROC SQL” on page
151.

Details

Table Aliases
A table alias is a temporary, alternate name for a table that is specified in the FROM
clause. Table aliases are prefixed to column names to distinguish between columns that
are common to multiple tables. Column names in reflexive joins (joining a table with

FROM Clause 299

itself) must be prefixed with a table alias in order to distinguish which copy of the table
the column comes from. Column names in other types of joins must be prefixed with
table aliases or table names unless the column names are unique to those tables.

The optional keyword AS is often used to distinguish a table alias from other table
names.

In-Line Views
The FROM clause can itself contain a query expression that takes an optional table alias.
This type of nested query expression is called an in-line view. An in-line view is any
query expression that would be valid in a CREATE VIEW statement. PROC SQL can
support many levels of nesting, but it is limited to 256 tables in any one query. The 256-
table limit includes underlying tables that can contribute to views that are specified in
the FROM clause.

An in-line view saves you a programming step. Rather than creating a view and referring
to it in another query, you can specify the view in-line in the FROM clause.

Characteristics of in-line views include the following:

• An in-line view is not assigned a permanent name, although it can take an alias.

• An in-line view can be referred to only in the query in which it is defined. It cannot
be referenced in another query.

• You cannot use an ORDER BY clause in an in-line view.

• The names of columns in an in-line view can be assigned in the object-item list of
that view or with a list of names enclosed in parentheses following the alias. This
syntax can be useful for renaming columns. See “Example 10: Querying an In-Line
View” on page 272 for an example.

• In order to visually separate an in-line view from the rest of the query, you can
enclose the in-line view in any number of pairs of parentheses. Note that if you
specify an alias for the in-line view, the alias specification must appear outside the
outermost pair of parentheses for that in-line view.

WHERE Clause
Subsets the output based on specified conditions.

See: “Example 4: Joining Two Tables” on page 251
“Example 9: Joining Three Tables” on page 268

Syntax
WHERE sql-expression

Required Argument
sql-expression

See “sql-expression” on page 340.

Details
• When a condition is met (that is, the condition resolves to true), those rows are

displayed in the result table. Otherwise, no rows are displayed.

300 Chapter 8 • SQL SELECT Statement Clauses

• You cannot use summary functions that specify only one column.

In this example, MAX is a summary function. Therefore, its context is that of a
GROUP BY clause. It cannot be used to group, or summarize, data.

where max(measure1) > 50;

However, this WHERE clause will work.

where max(measure1,measure2) > 50;

In this case, MAX is a SAS function. It works with the WHERE clause because you
are comparing the values of two columns within the same row. Consequently, it can
be used to subset the data.

GROUP BY Clause
Specifies how to group the data for summarizing.

See: “Example 8: Creating a View from a Query's Result” on page 265
“Example 12: Joining Two Tables and Calculating a New Value” on page 276

Syntax
GROUP BY group-by-item <, …, group-by-item>

Required Argument
group-by-item

is one of the following:

integer
is a positive integer that equates to a column's position.

column-name
is the name of a column or a column alias. See “column-name” on page 313.

sql-expression
See “sql-expression” on page 340.

Details
• You can specify more than one group-by-item to get more detailed reports. Both the

grouping of multiple items and the BY statement of a PROC step are evaluated in
similar ways. If more than one group-by-item is specified, then the first one
determines the major grouping.

• Integers can be substituted for column names (that is, SELECT object-items) in the
GROUP BY clause. For example, if the group-by-item is 2, then the results are
grouped by the values in the second column of the SELECT clause list. Using
integers can shorten your coding and enable you to group by the value of an
unnamed expression in the SELECT list. Note that if you use a floating-point value
(for example, 2.3), then PROC SQL ignores the decimal portion.

• The data does not have to be sorted in the order of the group-by values because
PROC SQL handles sorting automatically. You can use the ORDER BY clause to
specify the order in which rows are displayed in the result table.

GROUP BY Clause 301

• If you specify a GROUP BY clause in a query that does not contain a summary
function, then your clause is transformed into an ORDER BY clause and a message
to that effect is written to the SAS log.

• You can group the output by the values that are returned by an expression. For
example, if X is a numeric variable, then the output of the following is grouped by
the integer portion of values of X:

select x, sum(y)
from table1
group by int(x);

Similarly, if Y is a character variable, then the output of the following is grouped by
the second character of values of Y:

select sum(x), y
from table1
group by substring(y from 2 for 1);

Note that an expression that contains only numeric literals (and functions of numeric
literals) or only character literals (and functions of character literals) is ignored.

An expression in a GROUP BY clause cannot be a summary function. For example,
the following GROUP BY clause is not valid:

 group by sum(x)

HAVING Clause
Subsets grouped data based on specified conditions.

See: “Example 8: Creating a View from a Query's Result” on page 265 and “Example 12:
Joining Two Tables and Calculating a New Value” on page 276

Syntax
HAVING sql-expression

Required Argument
sql-expression

See “sql-expression” on page 340.

Details
The HAVING clause is used with at least one summary function and an optional
GROUP BY clause to summarize groups of data in a table. A HAVING clause is any
valid SQL expression that is evaluated as either true or false for each group in a query.
Alternatively, if the query involves remerged data, then the HAVING expression is
evaluated for each row that participates in each group. The query must include one or
more summary functions.

Typically, the GROUP BY clause is used with the HAVING expression and defines the
group or groups to be evaluated. If you omit the GROUP BY clause, then the summary
function and the HAVING clause treat the table as one group.

The following PROC SQL step uses the PROCLIB.PAYROLL table (shown in
“Example 2: Creating a Table from a Query's Result” on page 247) and groups the rows

302 Chapter 8 • SQL SELECT Statement Clauses

by Gender to determine the oldest employee of each gender. In SAS, dates are stored as
integers. The lower the birthdate as an integer, the greater the age. The expression
birth=min(birth)is evaluated for each row in the table. When the minimum
birthdate is found, the expression becomes true and the row is included in the output.

proc sql;
 title 'Oldest Employee of Each Gender';
 select *
 from proclib.payroll
 group by gender
 having birth=min(birth);

Note: This query involves remerged data because the values returned by a summary
function are compared to values of a column that is not in the GROUP BY clause.
See “Remerging Data” on page 352 for more information about summary functions
and remerging data.

ORDER BY Clause
Specifies the order in which rows are displayed in a result table.

See: “query-expression” on page 332
“Example 11: Retrieving Values with the SOUNDS-LIKE Operator” on page 274

Syntax
ORDER BY order-by-item <ASC|DESC><, … order-by-item<ASC|DESC>>;

Required Arguments
order-by-item

is one of the following:

integer
equates to a column's position.

column-name
is the name of a column or a column alias. See “column-name” on page 313.

sql-expression
See “sql-expression” on page 340.

ASC
orders the data in ascending order. This is the default order. If neither ASC nor
DESC is specified, the data is ordered in ascending order.

DESC
orders the data in descending order.

Details
• The ORDER BY clause sorts the results of a query expression according to the order

specified in that query. When this clause is used, the default ordering sequence is
ascending, from the lowest value to the highest. You can use the SORTSEQ= option
to change the collating sequence for your output. See “PROC SQL Statement” on
page 215.

ORDER BY Clause 303

• The order of the output rows that are returned is guaranteed only for columns that are
specified in the ORDER BY clause.

Note: The ORDER BY clause does not guarantee that the order of the rows
generated is deterministic. The ANSI standard for SQL allows the SQL
implementation to specify whether the ORDER BY clause is stable or unstable.
If the joint combination of values that is referenced in an ORDER BY clause for
a query are unique in all of the rows that are being ordered, then the order of
rows that is generated by ORDER BY is always deterministic. However, if the
ORDER BY clause does not reference a joint combination of unique values, then
the order of rows is not deterministic if ORDER BY is unstable.

• If an ORDER BY clause is omitted, then a particular order to the output rows, such
as the order in which the rows are encountered in the queried table, cannot be
guaranteed—even if an index is present. Without an ORDER BY clause, the order of
the output rows is determined by the internal processing of PROC SQL, the default
collating sequence of SAS, and your operating environment.

• If more than one order-by-item is specified (separated by commas), then the first one
determines the major sort order.

• Integers can be substituted for column names (that is, SELECT object-items) in the
ORDER BY clause. For example, if the order-by-item is 2 (an integer), then the
results are ordered by the values of the second column. If a query expression
includes a set operator (for example, UNION), then use integers to specify the order.
Doing so avoids ambiguous references to columns in the table expressions. Note that
if you use a floating-point value (for example, 2.3) instead of an integer, then PROC
SQL ignores the decimal portion.

• In the ORDER BY clause, you can specify any column of a table or view that is
specified in the FROM clause of a query expression, regardless of whether that
column has been included in the query's SELECT clause. For example, this query
produces a report ordered by the descending values of the population change for each
country from 1990 to 1995:

proc sql;
 select country
 from census
 order by pop95-pop90 desc;

NOTE: The query as specified involves
 ordering by an item that
 doesn't appear in its SELECT clause.

• You can order the output by the values that are returned by an expression. For
example, if X is a numeric variable, then the output of the following is ordered by
the integer portion of values of X:

select x, y
from table1
order by int(x);

Similarly, if Y is a character variable, then the output of the following is ordered by
the second character of values of Y:

select x, y
from table1
order by substring(y from 2 for 1);

Note that an expression that contains only numeric literals (and functions of numeric
literals) or only character literals (and functions of character literals) is ignored.

304 Chapter 8 • SQL SELECT Statement Clauses

Chapter 9

SQL Procedure Components

Overview . 305

Dictionary . 306
BETWEEN Condition . 306
BTRIM Function . 306
CALCULATED . 307
CASE Expression . 308
COALESCE Function . 309
column-definition . 310
column-modifier . 311
column-name . 313
CONNECTION TO . 313
CONTAINS Condition . 314
EXISTS Condition . 314
IN Condition . 315
IS Condition . 316
joined-table . 316
LIKE Condition . 330
LOWER Function . 332
query-expression . 332
sql-expression . 340
SUBSTRING Function . 348
summary-function . 349
table-expression . 357
UPPER Function . 358

Overview
This section describes the components that are used in SQL procedure statements.
Components are the items in PROC SQL syntax that appear in roman type.

Most components are contained in clauses within the statements. For example, the basic
SELECT statement includes the SELECT and FROM clauses, where each clause
contains one or more components. Components can also contain other components.

For easy reference, components appear in alphabetical order, and some terms are
referred to before they are defined. Use the index or the “See Also” references to refer to
other statement or component descriptions that might be helpful.

305

Dictionary

BETWEEN Condition
Selects rows where column values are within a range of values.

Syntax
sql-expression <NOT> BETWEEN sql-expression
AND sql-expression

Required Argument
sql-expression

is described in “sql-expression” on page 340.

Details
• The SQL expressions must be of compatible data types. They must be either all

numeric or all character types.

• Because a BETWEEN condition evaluates the boundary values as a range, it is not
necessary to specify the smaller quantity first.

• You can use the NOT logical operator to exclude a range of numbers. For example,
you can eliminate customer numbers between 1 and 15 (inclusive) so that you can
retrieve data on more recently acquired customers.

• PROC SQL supports the same comparison operators that the DATA step supports.
For example:

 x between 1 and 3
 x between 3 and 1
 1<=x<=3
 x>=1 and x<=3

BTRIM Function
Removes blanks or specified characters from the beginning, the end, or both the beginning and end of a
character string.

Syntax
BTRIM (<<btrim-specification><'btrim-character' FROM>> sql-expression)

Required Arguments
btrim-specification

is one of the following:

306 Chapter 9 • SQL Procedure Components

LEADING
removes the blanks or specified characters from the beginning of the character
string.

TRAILING
removes the blanks or specified characters from the end of the character string.

BOTH
removes the blanks or specified characters from both the beginning and the end
of the character string.

Default: BOTH

btrim-character
is a single character that is to be removed from the character string. The default
character is a blank.

sql-expression
must resolve to a character string or character variable and is described in “sql-
expression” on page 340.

Details
The BTRIM function operates on character strings. BTRIM removes one or more
instances of a single character (the value of btrim-character) from the beginning, the end,
or both the beginning and end of a string, depending whether LEADING, TRAILING, or
BOTH is specified. If btrim-specification is not specified, then BOTH is used. If btrim-
character is omitted, then blanks are removed.

Note: SAS adds trailing blanks to character values that are shorter than the length of the
variable. Suppose you have a character variable Z, with length 10, and a value
xxabcxx. SAS stores the value with three blanks after the last x (for a total length of
10). If you attempt to remove all the x characters with

btrim(both 'x' from z)

then the result is abcxx because PROC SQL sees the trailing characters as blanks,
not the x character. In order to remove all the x characters, use

btrim(both 'x' from btrim(z))

The inner BTRIM function removes the trailing blanks before passing the value to
the outer BTRIM function.

CALCULATED
Refers to columns already calculated in the SELECT clause.

Syntax
CALCULATED column-alias

Required Argument
column-alias

is the name that is assigned to the column in the SELECT clause.

CALCULATED 307

Details
CALCULATED enables you to use the results of an expression in the same SELECT
clause or in the WHERE clause. It is valid only when used to refer to columns that are
calculated in the immediate query expression.

CASE Expression
Selects result values that satisfy specified conditions.

Examples: “Example 3: Updating Data in a PROC SQL Table” on page 249
“Example 13: Producing All the Possible Combinations of the Values in a Column”
on page 279

Syntax
CASE <case-operand>

WHEN when-condition THEN result-expression
<…WHENwhen-conditionTHENresult-expression>
<ELSEresult-expression>
END

Required Arguments
case-operand

is a valid SQL expression that resolves to a table column whose values are compared
to all the when-conditions. See “sql-expression” on page 340.

when-condition

• When case-operand is specified, when-condition is a shortened SQL expression
that assumes case-operand as one of its operands and that resolves to true or
false.

• When case-operand is not specified, when-condition is an SQL expression that
resolves to true or false.

result-expression
is an SQL expression that resolves to a value.

Details
The CASE expression selects values if certain conditions are met. A CASE expression
returns a single value that is conditionally evaluated for each row of a table (or view).
Use the WHEN-THEN clauses when you want to execute a CASE expression for some
but not all of the rows in the table that is being queried or created. An optional ELSE
expression gives an alternative action if no THEN expression is executed.

When you omit case-operand, when-condition is evaluated as a Boolean (true or false)
value. If when-condition returns a nonzero, nonmissing result, then the WHEN clause is
true. If case-operand is specified, then it is compared with when-condition for equality.
If case-operand equals when-condition, then the WHEN clause is true.

If the when-condition is true for the row that is being executed, then the result
expression that follows THEN is executed. If when-condition is false, then PROC SQL
evaluates the next when-condition until they are all evaluated. If every when-condition is

308 Chapter 9 • SQL Procedure Components

false, then PROC SQL executes the ELSE expression, and its result becomes the CASE
expression's result. If no ELSE expression is present and every when-condition is false,
then the result of the CASE expression is a missing value.

You can use a CASE expression as an item in the SELECT clause and as either operand
in an SQL expression.

Example
The following two PROC SQL steps show two equivalent CASE expressions that create
a character column with the strings in the THEN clause. The CASE expression in the
second PROC SQL step is a shorthand method that is useful when all the comparisons
are with the same column.

proc sql;
 select Name, case
 when Continent = 'North America' then 'Continental U.S.'
 when Continent = 'Oceania' then 'Pacific Islands'
 else 'None'
 end as Region
 from states;

proc sql;
 select Name, case Continent
 when 'North America' then 'Continental U.S.'
 when 'Oceania' then 'Pacific Islands'
 else 'None'
 end as Region
 from states;

Note: When you use the shorthand method, the conditions must all be equality tests.
That is, they cannot use comparison operators or other types of operators.

COALESCE Function
Returns the first nonmissing value from a list of columns.

Example: “Example 7: Performing an Outer Join” on page 259

Syntax
COALESCE (column-name <, … column-name>)

Required Argument
column-name

is described in “column-name” on page 313.

Details
COALESCE accepts one or more column names of the same data type. The
COALESCE function checks the value of each column in the order in which they are
listed and returns the first nonmissing value. If only one column is listed, the
COALESCE function returns the value of that column. If all the values of all arguments
are missing, the COALESCE function returns a missing value.

COALESCE Function 309

In some SQL DBMSs, the COALESCE function is called the IFNULL function. See
“PROC SQL and the ANSI Standard” on page 373 for more information.

Note: If your query contains a large number of COALESCE function calls, it might be
more efficient to use a natural join instead. See “Natural Joins” on page 325.

column-definition
Defines PROC SQL's data types and dates

See: “column-modifier” on page 311

Example: “Example 1: Creating a Table and Inserting Data into It” on page 245

Syntax
column data-type <column-modifier <… column-modifier>>

Required Arguments
column

is a column name.

column-modifier
is described in “column-modifier” on page 311.

data-type
is one of the following data types:

CHARACTER|VARCHAR <(width)>
indicates a character column with a column width of width. The default column
width is eight characters.

INTEGER|SMALLINT
indicates an integer column.

DECIMAL|NUMERIC|FLOAT <(width<, ndec>)>
indicates a floating-point column with a column width of width and ndec decimal
places.

REAL|DOUBLE PRECISION
indicates a floating-point column.

DATE
indicates a date column.

Details
• SAS supports many but not all of the data types that SQL-based databases support.

• For all the numeric data types (INTEGER, SMALLINT, DECIMAL, NUMERIC,
FLOAT, REAL, DOUBLE PRECISION, and DATE), the SQL procedure defaults to
the SAS data type NUMERIC. The width and ndec arguments are ignored; PROC
SQL creates all numeric columns with the maximum precision allowed by SAS. If
you want to create numeric columns that use less storage space, then use the
LENGTH statement in the DATA step. The various numeric data type names, along
with the width and ndec arguments, are included for compatibility with other SQL
software.

310 Chapter 9 • SQL Procedure Components

• For the character data types (CHARACTER and VARCHAR), the SQL procedure
defaults to the SAS data type CHARACTER. The width argument is honored.

• The CHARACTER, INTEGER, and DECIMAL data types can be abbreviated to
CHAR, INT, and DEC, respectively.

• A column that is declared with DATE is a SAS numeric variable with a date
informat or format. You can use any of the column-modifiers to set the appropriate
attributes for the column that is being defined. See SAS Formats and Informats:
Reference for more information about dates.

• When using the VARCHAR2 data type for the Oracle database, or the VARCHAR
data type for Greenplum and Aster databases, do not use trailing blanks in column
values. Trailing blanks in the VARCHAR2 and VARCHAR data types are
considered significant for some databases. Therefore, the results might not be
correct, and the generated query is less efficient.

column-modifier
Sets column attributes.

See: “column-definition” on page 310
“SELECT Clause” on page 291

Examples: “Example 1: Creating a Table and Inserting Data into It” on page 245
“Example 2: Creating a Table from a Query's Result” on page 247

Syntax
column-modifier

Required Argument
column-modifier

is one of the following:

INFORMAT=informatw.d
specifies a SAS informat to be used when SAS accesses data from a table or
view. You can change one permanent informat to another by using the ALTER
statement. PROC SQL stores informats in its table definitions so that other SAS
procedures and the DATA step can use this information when they reference
tables created by PROC SQL.

See SAS Formats and Informats: Reference for more information about
informats.

FORMAT=formatw.d
specifies a SAS format for determining how character and numeric values in a
column are displayed by the query expression. If the FORMAT= modifier is used
in the ALTER, CREATE TABLE, or CREATE VIEW statements, then it
specifies the permanent format to be used when SAS displays data from that
table or view. You can change one permanent format to another by using the
ALTER statement.

See SAS Formats and Informats: Reference for more information about formats.

column-modifier 311

LABEL='label'
specifies a column label. If the LABEL= modifier is used in the ALTER,
CREATE TABLE, or CREATE VIEW statements, then it specifies the
permanent label to be used when displaying that column. You can change one
permanent label to another by using the ALTER statement.

A label can begin with the following characters: a through z, A through Z, 0
through 9, an underscore (_), or a blank space. If you begin a label with any other
character, such as pound sign (#), then that character is used as a split character
and it splits the label onto the next line wherever it appears. For example:
select dropout label= '#Percentage of#Students
Who#Dropped Out' from educ(obs=5);

If a special character must appear as the first character in the output, then precede
it with a space or a forward slash (/).

You can omit the LABEL= part of the column-modifier and still specify a label.
Be sure to enclose the label in quotation marks, as in this example: select
empname "Names of Employees" from sql.employees;

If an apostrophe must appear in the label, then type it twice so that SAS reads the
apostrophe as a literal. Alternatively, you can use single and double quotation
marks alternately (for example, “Date Rec'd”).

LENGTH=length
specifies the length of the column. This column modifier is valid only in the
context of a SELECT statement.

TRANSCODE=YES|NO
for character columns, specifies whether values can be transcoded. Use
TRANSCODE=NO to suppress transcoding. Note that when you create a table
by using the CREATE TABLE AS statement, the transcoding attribute for a
given character column in the created table is the same as it is in the source table
unless you change it with the TRANSCODE= column modifier. For more
information about transcoding, see SAS National Language Support (NLS):
Reference Guide.
Default: YES
Restrictions:

The TRANSCODE=NO argument is not supported by some SAS Workspace
Server clients. In SAS 9.2, if the argument is not supported, column values
with TRANSCODE=NO are replaced (masked) with asterisks (*). Before
SAS 9.2, column values with TRANSCODE=NO were transcoded.
Suppression of transcoding is not supported for the V6TAPE engine.

Interaction: If the TRANSCODE= attribute is set to NO for any character
variable in a table, then PROC CONTENTS prints a transcode column that
contains the TRANSCODE= value for each variable in the data set. If all
variables in the table are set to the default TRANSCODE= value (YES), then
no transcode column is printed.

Details
If you refer to a labeled column in the ORDER BY or GROUP BY clause, then you
must use either the column name (not its label), the column's alias, or its ordering integer
(for example, ORDER BY 2). See the section on SAS statements in SAS Statements:
Reference for more information about labels.

312 Chapter 9 • SQL Procedure Components

column-name
Specifies the column to select.

See: “column-modifier” on page 311
“SELECT Clause” on page 291

Syntax
column-name

Required Argument
column-name

is one of the following:

column
is the name of a column.

table-name.column
is the name of a column in the table table-name.

table-alias.column
is the name of a column in the table that is referenced by table-alias.

view-name.column
is the name of a column in the view view-name.

view-alias.column
is the name of a column in the view that is referenced by view-alias.

Details
A column can be referred to by its name alone if it is the only column by that name in all
the tables or views listed in the current query expression. If the same column name exists
in more than one table or view in the query expression, then you must qualify each use
of the column name by prefixing a reference to the table that contains it. Consider the
following examples:

SALARY /* name of the column */
EMP.SALARY /* EMP is the table or view name */
E.SALARY /* E is an alias for the table
 or view that contains the
 SALARY column */

CONNECTION TO
Retrieves and uses DBMS data in a PROC SQL query or view.

Tip: You can use CONNECTION TO in the SELECT statement's FROM clause as part of
the from-list.

See: “Connecting to a DBMS by Using the SQL Procedure Pass-Through Facility” on
page 166
SAS/ACCESS documentation

CONNECTION TO 313

Syntax
CONNECTION TO dbms-name (dbms-query)
CONNECTION TO alias (dbms-query)

Required Arguments
alias

specifies an alias, if one was defined in the CONNECT statement.

dbms-name
identifies the DBMS that you are using.

dbms-query
specifies the query to send to a DBMS. The query uses the DBMS's dynamic SQL.
You can use any SQL syntax that the DBMS understands, even if that syntax is not
valid for PROC SQL. For example, your DBMS query can contain a semicolon.

The DBMS determines the number of tables that you can join with dbms-query. Each
CONNECTION TO component counts as one table toward the 256-table PROC SQL
limit for joins.

See SAS/ACCESS for Relational Databases: Reference for more information about
DBMS queries.

CONTAINS Condition
Tests whether a string is part of a column's value.

Alias: ?

Restriction: The CONTAINS condition is used only with character operands.

Example: “Example 7: Performing an Outer Join” on page 259

Syntax
sql-expression <NOT> CONTAINS sql-expression

Required Argument
sql-expression

is described in “sql-expression” on page 340.

EXISTS Condition
Tests if a subquery returns one or more rows.

See: “Query Expressions (Subqueries)” on page 343

314 Chapter 9 • SQL Procedure Components

Syntax
<NOT> EXISTS (query-expression)

Required Argument
query-expression

is described in “query-expression” on page 332.

Details
The EXISTS condition is an operator whose right operand is a subquery. The result of an
EXISTS condition is true if the subquery resolves to at least one row. The result of a
NOT EXISTS condition is true if the subquery evaluates to zero rows. For example, the
following query subsets PROCLIB.PAYROLL (which is shown in “Example 2: Creating
a Table from a Query's Result” on page 247) based on the criteria in the subquery. If the
value for STAFF.IDNUM is on the same row as the value CT in PROCLIB.STAFF
(which is shown in “Example 4: Joining Two Tables” on page 251), then the matching
IDNUM in PROCLIB.PAYROLL is included in the output. Thus, the query returns all
the employees from PROCLIB.PAYROLL who live in CT.

 proc sql;
 select *
 from proclib.payroll p
 where exists (select *
 from proclib.staff s
 where p.idnumber=s.idnum
 and state='CT');

IN Condition
Tests set membership.

Example: “Example 4: Joining Two Tables” on page 251

Syntax
sql-expression <NOT> IN (query-expression | constant <, … constant>)

Required Arguments
constant

is a number or a quoted character string (or other special notation) that indicates a
fixed value. Constants are also called literals.

query-expression
is described in “query-expression” on page 332.

sql-expression
is described in “sql-expression” on page 340.

Details
An IN condition tests if the column value that is returned by the SQL expression on the
left is a member of the set (of constants or values returned by the query expression) on

IN Condition 315

the right. The IN condition is true if the value of the left-hand operand is in the set of
values that are defined by the right-hand operand.

IS Condition
Tests for a missing value.

Example: “Example 5: Combining Two Tables” on page 254

Syntax
sql-expression IS <NOT> NULL | MISSING

Required Argument
sql-expression

is described in “sql-expression” on page 340.

Details
IS NULL and IS MISSING are predicates that test for a missing value. IS NULL and IS
MISSING are used in the WHERE, ON, and HAVING expressions. Each predicate
resolves to true if the SQL expression's result is missing and false if it is not missing.

SAS stores a numeric missing value as a period (.) and a character missing value as a
blank space. Unlike missing values in some versions of SQL, missing values in SAS
always appear first in the collating sequence. Therefore, in Boolean and comparison
operations, the following expressions resolve to true in a predicate:

 3>null
 -3>null
 0>null

The SAS method for evaluating missing values differs from the method of the ANSI
standard for SQL. According to the standard, these expressions are NULL. See “sql-
expression” on page 340 for more information about predicates and operators. See
“PROC SQL and the ANSI Standard” on page 373 for more information about the
ANSI standard.

joined-table
Joins a table with itself or with other tables or views.

Restriction: Joins are limited to 256 tables.

See: “FROM Clause” on page 299
“query-expression” on page 332

Examples: “Example 4: Joining Two Tables” on page 251
“Example 7: Performing an Outer Join” on page 259
“Example 9: Joining Three Tables” on page 268
“Example 13: Producing All the Possible Combinations of the Values in a Column”
on page 279
“Example 14: Matching Case Rows and Control Rows” on page 285

316 Chapter 9 • SQL Procedure Components

Syntax
table-name <<AS>alias>, table-name <<AS>alias>
<, … table-name<<AS>alias>>
table-name <<AS>alias> <INNER> JOIN table-name <<AS>alias>
ON sql-expression
table-name <<AS>alias> LEFT JOIN | RIGHT JOIN | FULL JOIN
table-name <<AS>alias> ON sql-expression
table-name <<AS>alias> CROSS JOIN table-name <<AS>alias>
table-name <<AS>alias> UNION JOIN table-name <<AS>alias>
table-name <<AS>alias> NATURAL
<INNER | FULL<OUTER> | LEFT<OUTER> | RIGHT<OUTER>> JOIN table-name <<AS>alias>

Required Arguments
alias

specifies an alias for table-name. The AS keyword is optional.

sql-expression
is described in “sql-expression” on page 340.

table-name
can be one of the following:

• the name of a PROC SQL table.

• the name of a SAS view or PROC SQL view.

• a query expression. A query expression in the FROM clause is usually referred to
as an inline view. See “FROM Clause” on page 299 for more information about
i-line views.

• a connection to a DBMS in the form of the CONNECTION TO component. See
“CONNECTION TO” on page 313 for more information.

table-name can be a one-level name, a two-level libref.table name, or a physical
pathname that is enclosed in single quotation marks.

Note: If you include parentheses, then be sure to include them in pairs. Parentheses
are not valid around comma joins (type).

Details

Types of Joins
• Inner join. See “Inner Joins” on page 318.

• Outer join. See “Outer Joins” on page 321.

• Cross join. See “Cross Joins” on page 323.

• Union join. See “Union Joins” on page 324.

• Natural join. See “Natural Joins” on page 325.

Joining Tables
When multiple tables, views, or query expressions are listed in the FROM clause, they
are processed to form one table. The resulting table contains data from each contributing
table. These queries are referred to as joins.

joined-table 317

Conceptually, when two tables are specified, each row of table A is matched with all the
rows of table B to produce an internal or intermediate table. The number of rows in the
intermediate table (Cartesian product) is equal to the product of the number of rows in
each of the source tables. The intermediate table becomes the input to the rest of the
query in which some of its rows can be eliminated by the WHERE clause or summarized
by a summary function.

A common type of join is an equijoin, in which the values from a column in the first
table must equal the values of a column in the second table.

Table Limit
PROC SQL can process a maximum of 256 tables for a join. If you are using views in a
join, then the number of tables on which the views are based count toward the 256-table
limit. Each CONNECTION TO component in the pass-through facility counts as one
table.

Specifying the Rows to Be Returned
The WHERE clause or ON clause contains the conditions (SQL expression) under which
the rows in the Cartesian product are kept or eliminated in the result table. WHERE is
used to select rows from inner joins. ON is used to select rows from inner or outer joins.

The expression is evaluated for each row from each table in the intermediate table
described earlier in “Joining Tables” on page 317. The row is considered to be matching
if the result of the expression is true (a nonzero, nonmissing value) for that row.

Note: You can follow the ON clause with a WHERE clause to further subset the query
result. See “Example 7: Performing an Outer Join” on page 259 for an example.

Table Aliases
Table aliases are used in joins to distinguish the columns of one table from the columns
in the other table or tables. A table name or alias must be prefixed to a column name
when you are joining tables that have matching column names. See “FROM Clause” on
page 299 for more information about table aliases.

Joining a Table with Itself
A single table can be joined with itself to produce more information. These joins are
sometimes called reflexive joins. In these joins, the same table is listed twice in the
FROM clause. Each instance of the table must have a table alias or you will not be able
to distinguish between references to columns in either instance of the table. See
“Example 13: Producing All the Possible Combinations of the Values in a Column” on
page 279 and “Example 14: Matching Case Rows and Control Rows” on page 285 for
examples.

Inner Joins
An inner join returns a result table for all the rows in a table that have one or more
matching rows in the other tables, as specified by the SQL expression. Inner joins can be
performed on up to 256 tables in the same query expression.

You can perform an inner join by using a list of table-names separated by commas or by
using the INNER, JOIN, and ON keywords.

The LEFTTAB and RIGHTTAB tables are used to illustrate this type of join:

data lefttab;
 input Continent $ Export $ Country $;

318 Chapter 9 • SQL Procedure Components

 datalines;
NA wheat Canada
EUR corn France
EUR rice Italy
AFR oil Egypt
;

data righttab;
 input Continent $ Export $ Country $;
 datalines;
NA sugar USA
EUR corn Spain
EUR beets Belgium
ASIA rice Vietnam
;

proc sql;
 title 'Left Table - LEFTTAB';
 select * from lefttab;

 title 'Right Table - RIGHTTAB';
 select * from righttab;

 Left Table - LEFTTAB

 Continent Export Country

 NA wheat Canada
 EUR corn France
 EUR rice Italy
 AFR oil Egypt

 Right Table - RIGHTTAB

 Continent Export Country

 NA sugar USA
 EUR corn Spain
 EUR beets Belgium
 ASIA rice Vietnam

The following example joins the LEFTTAB and RIGHTTAB tables to get the Cartesian
product of the two tables. The Cartesian product is the result of combining every row
from one table with every row from another table. You get the Cartesian product when
you join two tables and do not subset them with a WHERE clause or ON clause.

proc sql;
 title 'The Cartesian Product of';
 title2 'LEFTTAB and RIGHTTAB';
 select *
 from lefttab, righttab;

joined-table 319

Output 9.1 Cartesian Product of LEFTTAB and RIGHTTAB Tables

The LEFTTAB and RIGHTTAB tables can be joined by listing the table names in the
FROM clause. The following query represents an equijoin because the values of
Continent from each table are matched. The column names are prefixed with the table
aliases so that the correct columns can be selected.

proc sql;
 title 'Inner Join';
 select *
 from lefttab as l, righttab as r
 where l.continent=r.continent;

320 Chapter 9 • SQL Procedure Components

Output 9.2 Inner Join

The following PROC SQL step is equivalent to the previous one and shows how to write
an equijoin using the INNER JOIN and ON keywords.

proc sql;
 title 'Inner Join';
 select *
 from lefttab as l inner join
 righttab as r
 on l.continent=r.continent;

See Also

Examples

• “Example 4: Joining Two Tables” on page 251

• “Example 13: Producing All the Possible Combinations of the Values in a Column”
on page 279

• “Example 14: Matching Case Rows and Control Rows” on page 285

Outer Joins
Outer joins are inner joins that have been augmented with rows that did not match with
any row from the other table in the join. The three types of outer joins are left, right, and
full.

A left outer join, specified with the keywords LEFT JOIN and ON, has all the rows from
the Cartesian product of the two tables for which the SQL expression is true, plus rows
from the first (LEFTTAB) table that do not match any row in the second (RIGHTTAB)
table.

proc sql;
 title 'Left Outer Join';
 select *
 from lefttab as l left join
 righttab as r
 on l.continent=r.continent;

joined-table 321

Output 9.3 Left Outer Join

A right outer join, specified with the keywords RIGHT JOIN and ON, has all the rows
from the Cartesian product of the two tables for which the SQL expression is true, plus
rows from the second (RIGHTTAB) table that do not match any row in the first
(LEFTTAB) table.

proc sql;
 title 'Right Outer Join';
 select *
 from lefttab as l right join
 righttab as r
 on l.continent=r.continent;

Output 9.4 Right Outer Join

A full outer join, specified with the keywords FULL JOIN and ON, has all the rows
from the Cartesian product of the two tables for which the SQL expression is true, plus
rows from each table that do not match any row in the other table.

proc sql;
 title 'Full Outer Join';
 select *
 from lefttab as l full join

322 Chapter 9 • SQL Procedure Components

 righttab as r
 on l.continent=r.continent;

Output 9.5 Full Outer Join

See Also
“Example 7: Performing an Outer Join” on page 259

Cross Joins
A cross join returns as its result table the product of the two tables.

Using the LEFTTAB and RIGHTTAB example tables, the following program
demonstrates the cross join:

proc sql;
 title 'Cross Join';
 select *
 from lefttab as l cross join
 righttab as r;

joined-table 323

Output 9.6 Cross Join

The cross join is not functionally different from a Cartesian product join. You would get
the same result by submitting the following program:

proc sql;
 select *
 from lefttab, righttab;

Do not use an ON clause with a cross join. An ON clause will cause a cross join to fail.
However, you can use a WHERE clause to subset the output.

Union Joins
A union join returns a union of the columns of both tables. The union join places in the
results all rows with their respective column values from each input table. Columns that
do not exist in one table will have null (missing) values for those rows in the result table.
The following example demonstrates a union join.

proc sql;
 title 'Union Join';
 select *
 from lefttab union join righttab;

324 Chapter 9 • SQL Procedure Components

Output 9.7 Union Join

Using a union join is similar to concatenating tables with the OUTER UNION set
operator. See “query-expression” on page 332 for more information.

Do not use an ON clause with a union join. An ON clause will cause a union join to fail.

Natural Joins
A natural join selects rows from two tables that have equal values in columns that share
the same name and the same type. An error results if two columns have the same name
but different types. If join-specification is omitted when specifying a natural join, then
INNER is implied. If no like columns are found, then a cross join is performed.

The following examples use these two tables:

data table1;
 input x y z;
 datalines;
1 2 3
2 1 8
6 5 4
2 5 6
;

data table2;
 input x b z;
 datalines;
1 5 3
3 5 4
2 7 8
6 0 4
;

proc sql;
 title 'table1';
 select * from table1;

joined-table 325

 title 'table2';
 select * from table2;
quit;

Output 9.8 Tables for Natural Joins

The following program demonstrates a natural inner join.

proc sql;
 title 'Natural Inner Join';
 select *
 from table1 natural join table2;

Output 9.9 Natural Inner Join

The following program demonstrates a natural left outer join.

326 Chapter 9 • SQL Procedure Components

proc sql;
 title 'Natural Left Outer Join';
 select *
 from table1 natural left join table2;

Output 9.10 Natural Left Outer Join

Do not use an ON clause with a natural join. An ON clause will cause a natural join to
fail. When using a natural join, an ON clause is implied, matching all like columns.

Joining More than Two Tables
Inner joins are usually performed on two or three tables, but they can be performed on
up to 256 tables in PROC SQL. You can combine several joins of the same or different
types as shown in the following code lines:

a natural join b natural join c

a natural join b cross join c

You can also use parentheses to group joins together and control what joins happen in
what order as shown in the following examples:

(a, b) left join c on a.X=c.Y

a left join (b full join c on b.Z=c.Z) on a.Y=b.Y

Note: Commutative behavior varies depending on the type of join that is performed.

A join on three tables is described here to explain how and why the relationships work
among the tables.

In a three-way join, the SQL expression consists of two conditions: one condition relates
the first table to the second table; and the other condition relates the second table to the
third table. It is possible to break this example into stages. You could perform a two-way
join to create a temporary table and then you could join the temporary table with the
third one. However, PROC SQL can do it all in one step as shown in the next example.
The final table would be the same in both cases.

The example shows the joining of three tables: COMM, PRICE, and AMOUNT. To
calculate the total revenue from exports for each country, you need to multiply the
amount exported (AMOUNT table) by the price of each unit (PRICE table), and you
must know the commodity that each country exports (COMM table).

data comm;
 input Continent $ Export $ Country $;
 datalines;

joined-table 327

NA wheat Canada
EUR corn France
EUR rice Italy
AFR oil Egypt
;

data price;
 input Export $ Price;
 datalines;
rice 3.56
corn 3.45
oil 18
wheat 2.98
;

data amount;
 input Country $ Quantity;
 datalines;
Canada 16000
France 2400
Italy 500
Egypt 10000
;

proc sql;
 title 'COMM Table';
 select * from comm;
 title 'PRICE Table';
 select * from price;
 title 'AMOUNT Table';
 select * from amount;

328 Chapter 9 • SQL Procedure Components

Output 9.11 Source for Joining More than Two Tables

proc sql;
title 'Total Export Revenue';
select c.Country, p.Export, p.Price,
 a.Quantity, a.quantity*p.price
 as Total
 from comm as c JOIN price as p
 on (c.export=p.export)
 JOIN amount as a
 on (c.country=a.country);
quit;

joined-table 329

Output 9.12 Three-Way Join

See Also
“Example 9: Joining Three Tables” on page 268

Comparison of Joins and Subqueries
You can often use a subquery or a join to get the same result. However, it is often more
efficient to use a join if the outer query and the subquery do not return duplicate rows.
For example, the following queries produce the same result. The second query is more
efficient:

proc sql;
 select IDNumber, Birth
 from proclib.payroll
 where IDNumber in (select idnum
 from proclib.staff
 where lname like 'B%');

proc sql;
 select p.IDNumber, p.Birth
 from proclib.payroll p, proclib.staff s
 where p.idnumber=s.idnum
 and s.lname like 'B%';

Note: PROCLIB.PAYROLL is shown in “Example 2: Creating a Table from a Query's
Result” on page 247.

LIKE Condition
Tests for a matching pattern.

Syntax
sql-expression <NOT> LIKE sql-expression <ESCAPE character-expression>

Required Arguments
sql-expression

is described in “sql-expression” on page 340.

330 Chapter 9 • SQL Procedure Components

character-expression
is an SQL expression that evaluates to a single character. The operands of character-
expression must be character or string literals.

Note: If you use an ESCAPE clause, then the pattern-matching specification must be
a quoted string or quoted concatenated string; it cannot contain column names.

Details
The LIKE condition selects rows by comparing character strings with a pattern-matching
specification. It resolves to true and displays the matched strings if the left operand
matches the pattern specified by the right operand. The ESCAPE clause is used to search
for literal instances of the percent (%) and underscore (_) characters, which are usually
used for pattern matching.

Patterns for Searching
Patterns consist of three classes of characters:

underscore (_)
matches any single character.

percent sign (%)
matches any sequence of zero or more characters.

any other character
matches that character.

These patterns can appear before, after, or on both sides of characters that you want to
match. The LIKE condition is case-sensitive.

The following list uses these values: Smith, Smooth, Smothers, Smart, and
Smuggle.

'Sm%'
matches Smith, Smooth, Smothers, Smart, Smuggle.

'%th'
matches Smith, Smooth.

'S__gg%'
matches Smuggle.

'S_o'
matches a three-letter word, so it has no matches here.

'S_o%'
matches Smooth, Smothers.

'S%th'
matches Smith, Smooth.

'Z'
matches the single, uppercase character Z only, so it has no matches here.

Searching for Literal % and _
Because the % and _ characters have special meaning in the context of the LIKE
condition, you must use the ESCAPE clause to search for these character literals in the
input character string.

These examples use the values app, a_%, a__, bbaa1, and ba_1.

• The condition like 'a_%' matches app, a_%, and a__, because the underscore
(_) in the search pattern matches any single character (including the underscore), and

LIKE Condition 331

the percent (%) in the search pattern matches zero or more characters, including '%'
and '_'.

• The condition like 'a_^%' escape '^' matches only a_%, because the escape
character (^) specifies that the pattern search for a literal '%'.

• The condition like 'a_%' escape '_' matches none of the values, because the
escape character (_) specifies that the pattern search for an 'a' followed by a literal
'%', which does not apply to any of these values.

Searching for Mixed-Case Strings
To search for mixed-case strings, use the UPCASE function to make all the names
uppercase before entering the LIKE condition:

 upcase(name) like 'SM%';

Note: When you are using the % character, be aware of the effect of trailing blanks. You
might have to use the TRIM function to remove trailing blanks in order to match
values.

LOWER Function
Converts the case of a character string to lowercase.

See: “UPPER Function” on page 358

Syntax
LOWER (sql-expression)

Required Argument
sql-expression

must resolve to a character string and is described in “sql-expression” on page 340.

Details
The LOWER function operates on character strings. LOWER changes the case of its
argument to all lowercase.

Note: The LOWER function is provided for compatibility with the ANSI SQL standard.
You can also use the SAS function LOWCASE.

query-expression
Retrieves data from tables.

See: “table-expression” on page 357
“Query Expressions (Subqueries)” on page 343
“In-Line Views” on page 300

332 Chapter 9 • SQL Procedure Components

Syntax
table-expression <set-operator table-expression> <…set-operator table-expression>

Required Arguments
table-expression

is described in “table-expression” on page 357.

set-operator
is one of the following:

INTERSECT <CORRESPONDING> <ALL>
OUTER UNION <CORRESPONDING>
UNION <CORRESPONDING> <ALL>
EXCEPT <CORRESPONDING> <ALL>

Details

Query Expressions and Table Expressions
A query expression is one or more table expressions. Multiple table expressions are
linked by set operators. The following figure illustrates the relationship between table
expressions and query expressions.

query-
expression

table-
expression

table-
expression

set operator

SELECT clause
FROM clause
(more clauses)

SELECT clause
FROM clause
(more clauses)

Set Operators
PROC SQL provides these set operators:

OUTER UNION
concatenates the query results.

UNION
produces all unique rows from both queries.

EXCEPT
produces rows that are part of the first query only.

INTERSECT
produces rows that are common to both query results.

A query expression with set operators is evaluated as follows.

• Each table expression is evaluated to produce an (internal) intermediate result table.

• Each intermediate result table then becomes an operand linked with a set operator to
form an expression. For example, A UNION B.

query-expression 333

• If the query expression involves more than two table expressions, then the result
from the first two becomes an operand for the next set operator and operand, such as
(A UNION B) EXCEPT C, ((A UNION B) EXCEPT C) INTERSECT D, and so on.

• Evaluating a query expression produces a single output table.

Set operators follow this order of precedence unless they are overridden by parentheses
in the expressions: INTERSECT is evaluated first. OUTER UNION, UNION, and
EXCEPT have the same level of precedence.

PROC SQL performs set operations even if the tables or views that are referred to in the
table expressions do not have the same number of columns. The reason for this behavior
is that the ANSI standard for SQL requires that tables or views that are involved in a set
operation have the same number of columns and that the columns have matching data
types. If a set operation is performed on a table or view that has fewer columns than the
one or ones with which it is being linked, then PROC SQL extends the table or view
with fewer columns by creating columns with missing values of the appropriate data
type. This temporary alteration enables the set operation to be performed correctly.

CORRESPONDING (CORR) Keyword
The CORRESPONDING keyword is used only when a set operator is specified. CORR
causes PROC SQL to match the columns in table expressions by name and not by
ordinal position. Columns that do not match by name are excluded from the result table,
except for the OUTER UNION operator. See “OUTER UNION” on page 334.

For example, when performing a set operation on two table expressions, PROC SQL
matches the first specified column-name (listed in the SELECT clause) from one table
expression with the first specified column-name from the other. If CORR is omitted,
then PROC SQL matches the columns by ordinal position.

ALL Keyword
The set operators automatically eliminate duplicate rows from their output tables. The
optional ALL keyword preserves the duplicate rows, reduces the execution by one step,
and thereby improves the query expression's performance. You use it when you want to
display all the rows resulting from the table expressions, rather than just the unique
rows. The ALL keyword is used only when a set operator is also specified.

OUTER UNION
Performing an OUTER UNION is very similar to performing the SAS DATA step with
a SET statement. The OUTER UNION concatenates the intermediate results from the
table expressions. Thus, the result table for the query expression contains all the rows
produced by the first table expression followed by all the rows produced by the second
table expression. Columns with the same name are in separate columns in the result
table.

For example, the following query expression concatenates the ME1 and ME2 tables but
does not overlay like-named columns. Output 9.14 on page 336 shows the result.

data me1;
 input IDnum $ Jobcode $ Salary Bonus;
 datalines;
1400 ME1 29769 587
1403 ME1 28072 342
1120 ME1 28619 986
1120 ME1 28619 986
;

334 Chapter 9 • SQL Procedure Components

data me2;
 input IDnum $ Jobcode $ Salary;
 datalines;
1653 ME2 35108
1782 ME2 35345
1244 ME2 36925
;

proc sql ;
 title 'ME1';
 select * from me1;
 title 'ME2';
 select * from me2;

Output 9.13 ME1 and ME2 Tables

proc sql;
 title 'ME1 and ME2: OUTER UNION';
 select *
 from me1
 outer union
 select *
 from me2;

query-expression 335

Output 9.14 Outer Union of ME1 and ME2 Tables

Concatenating tables with the OUTER UNION set operator is similar to performing a
union join. See “Union Joins” on page 324 for more information.

To overlay columns with the same name, use the CORRESPONDING keyword.

proc sql;
 title 'ME1 and ME2: OUTER UNION CORRESPONDING';
 select *
 from me1
 outer union corr
 select *
 from me2;

Output 9.15 Outer Union Corresponding

In the resulting concatenated table, notice the following:

• OUTER UNION CORRESPONDING retains all nonmatching columns.

336 Chapter 9 • SQL Procedure Components

• For columns with the same name, if a value is missing from the result of the first
table expression, then the value in that column from the second table expression is
inserted.

• The ALL keyword is not used with OUTER UNION because this operator's default
action is to include all rows in a result table. Thus, both rows from the table ME1
where IDnum is 1120 appear in the output.

UNION
The UNION operator produces a table that contains all the unique rows that result from
both table expressions. That is, the output table contains rows produced by the first table
expression, the second table expression, or both.

Columns are appended by position in the tables, regardless of the column names.
However, the data type of the corresponding columns must match or the union will not
occur. PROC SQL issues a warning message and stops executing.

The names of the columns in the output table are the names of the columns from the first
table expression unless a column (such as an expression) has no name in the first table
expression. In such a case, the name of that column in the output table is the name of the
respective column in the second table expression.

In the following example, PROC SQL combines the two tables:

proc sql;
 title 'ME1 and ME2: UNION';
 select *
 from me1
 union
 select *
 from me2;

Output 9.16 Union of ME1 and ME2 Tables

In the following example, ALL includes the duplicate row from ME1. In addition, ALL
changes the sorting by specifying that PROC SQL make one pass only. Thus, the values
from ME2 are simply appended to the values from ME1.

proc sql;
 title 'ME1 and ME2: UNION ALL';
 select *
 from me1

query-expression 337

 union all
 select *
 from me2;

Output 9.17 Union All

See “Example 5: Combining Two Tables” on page 254 for another example.

EXCEPT
The EXCEPT operator produces (from the first table expression) an output table that has
unique rows that are not in the second table expression. If the intermediate result from
the first table expression has at least one occurrence of a row that is not in the
intermediate result of the second table expression, then that row (from the first table
expression) is included in the result table.

In the following example, the IN_USA table contains flights to cities within and outside
the USA. The OUT_USA table contains flights only to cities outside the USA.

data in_usa;
 input Flight $ Dest $;
 datalines;
145 ORD
156 WAS
188 LAX
193 FRA
207 LON
;
data OUT_USA;
 input Flight $ Dest $;
 datalines;
193 FRA
207 LON
311 SJA
;

proc sql;
 title 'IN_USA';
 select * from in_usa;

338 Chapter 9 • SQL Procedure Components

 title 'OUT_USA';
 select * from out_usa;

Output 9.18 Source Tables for Except Examples

This example returns only the rows from IN_USA that are not also in OUT_USA:

proc sql;
 title 'Flights from IN_USA Only';
 select * from in_usa
 except
 select * from out_usa;

Output 9.19 Flights from IN_USA Only

query-expression 339

INTERSECT
The INTERSECT operator produces an output table that has rows that are common to
both tables. For example, using the IN_USA and OUT_USA tables shown above, the
following example returns rows that are in both tables:

proc sql;
 title 'Flights from Both IN_USA and OUT_USA';
 select * from in_usa
 intersect
 select * from out_usa;

Output 9.20 Flights from Both IN_USA and OUT_USA

sql-expression
Produces a value from a sequence of operands and operators.

Syntax
operand operator operand

Required Arguments
operand

is one of the following:

• a constant, which is a number or a quoted character string (or other special
notation) that indicates a fixed value. Constants are also called literals. Constants
are described in SAS Functions and CALL Routines: Reference.

• a column-name, which is described in “column-name” on page 313.

• a CASE expression, which is described in “CASE Expression” on page 308.

• any supported SAS function. PROC SQL supports many of the functions
available to the SAS DATA step. Some of the functions that are not supported
are the variable information functions, functions that work with arrays of data,
and functions that operate on rows other than the current row. Other SQL
databases support their own sets of functions. Functions are described in the SAS
Functions and CALL Routines: Reference.

• any functions, except those with array elements, that are created with PROC
FCMP.

340 Chapter 9 • SQL Procedure Components

• the ANSI SQL functions COALESCE, BTRIM, LOWER, UPPER, and
SUBSTRING.

• a summary-function, which is described in “summary-function” on page 349.

• a query expression, which is described in “query-expression” on page 332.

• the USER literal, which references the user ID of the person who submitted the
program. The user ID that is returned is operating environment-dependent, but
PROC SQL uses the same value that the &SYSJOBID macro variable has on the
operating environment.

operator
is described in “Operators and the Order of Evaluation” on page 341.

Note: SAS functions, including summary functions, can stand alone as SQL
expressions. For example

select min(x) from table;

select scan(y,4) from table;

Details

SAS Functions
PROC SQL supports many of the functions available to the SAS DATA step. Some of
the functions that are not supported are the variable information functions and functions
that work with arrays of data. Other SQL databases support their own sets of functions.
For example, the SCAN function is used in the following query:

 select style, scan(street,1) format=$15.
 from houses;

PROC SQL also supports any user-written functions, except those functions with array
elements, that are created using Chapter 19, “FCMP Procedure” in Base SAS Procedures
Guide.

See the SAS Functions and CALL Routines: Reference for complete documentation of
SAS functions. Summary functions are also SAS functions. For more information, see
“summary-function” on page 349.

USER Literal
USER can be specified in a view definition. For example, you can create a view that
restricts access to the views in the user's department. Note that the USER literal value is
stored in uppercase, so it is advisable to use the UPCASE function when comparing to
this value:

 create view myemp as
 select * from dept12.employees
 where upcase(manager)=user;

This view produces a different set of employee information for each manager who
references it.

Operators and the Order of Evaluation
The order in which operations are evaluated is the same as in the DATA step with this
one exception: NOT is grouped with the logical operators AND and OR in PROC SQL;
in the DATA step, NOT is grouped with the unary plus and minus signs.

sql-expression 341

Unlike missing values in some versions of SQL, missing values in SAS always appear
first in the collating sequence. Therefore, in Boolean and comparison operations, the
following expressions resolve to true in a predicate:

 3>null
 -3>null
 0>null

You can use parentheses to group values or to nest mathematical expressions.
Parentheses make expressions easier to read and can also be used to change the order of
evaluation of the operators. Evaluating expressions with parentheses begins at the
deepest level of parentheses and moves outward. For example, SAS evaluates A+B*C as
A+(B*C), although you can add parentheses to make it evaluate as (A+B)*C for a
different result.

Higher priority operations are performed first: that is, group 0 operators are evaluated
before group 5 operators. The following table shows the operators and their order of
evaluation, including their priority groups.

Table 9.1 Operators and Order of Evaluation

Group Operator Description

0 () forces the expression enclosed to be evaluated first

1 case-expression selects result values that satisfy specified conditions

2 ** raises to a power

unary +, unary - indicates a positive or negative number

3 * multiplies

/ divides

4 + adds

− subtracts

5 || concatenates

6 <NOT> BETWEEN condition See “BETWEEN Condition” on page 306.

<NOT> CONTAINS condition see “CONTAINS Condition” on page 314.

<NOT> EXISTS condition See “EXISTS Condition” on page 314.

<NOT> IN condition See “IN Condition” on page 315.

IS <NOT> condition See “IS Condition” on page 316.

<NOT> LIKE condition See “LIKE Condition” on page 330.

7 =, eq equals

¬=, ^=, < >, ne does not equal

342 Chapter 9 • SQL Procedure Components

Group Operator Description

>, gt is greater than

<, lt is less than

>=, ge is greater than or equal to

<=, le is less than or equal to

=* sounds like (use with character operands only). See “Example 11:
Retrieving Values with the SOUNDS-LIKE Operator” on page 274.

eqt equal to truncated strings (use with character operands only). See
“Truncated String Comparison Operators” on page 343.

gtt greater than truncated strings

ltt less than truncated strings

get greater than or equal to truncated strings

let less than or equal to truncated strings

net not equal to truncated strings

8 ¬, ^, NOT indicates logical NOT

9 &, AND indicates logical AND

10 |, OR indicates logical OR

Symbols for operators might vary, depending on your operating environment. For more
information, see “SAS Operators in Expressions” in Chapter 6 of SAS Language
Reference: Concepts.

Truncated String Comparison Operators
PROC SQL supports truncated string comparison operators. (See Group 7 in Table 9.1
on page 342.) In a truncated string comparison, the comparison is performed after
making the strings the same length by truncating the longer string to be the same length
as the shorter string. For example, the expression 'TWOSTORY' eqt 'TWO' is true
because the string 'TWOSTORY' is reduced to 'TWO' before the comparison is
performed. Note that the truncation is performed internally; neither operand is
permanently changed.

Note: Unlike the DATA step, PROC SQL does not support the colon operators (such as
=:, >:, and <=:) for truncated string comparisons. Use the alphabetic operators (such
as EQT, GTT, and LET).

Query Expressions (Subqueries)
A query expression is called a subquery when it is used in a WHERE or HAVING
clause. A subquery is a query expression that is nested as part of another query
expression. A subquery selects one or more rows from a table based on values in another
table.

sql-expression 343

Depending on the clause that contains it, a subquery can return a single value or multiple
values. If more than one subquery is used in a query expression, then the innermost
query is evaluated first, then the next innermost query, and so on, moving outward.

PROC SQL allows a subquery (contained in parentheses) at any point in an expression
where a simple column value or constant can be used. In this case, a subquery must
return a single value, that is, one row with only one column.

The following is an example of a subquery that returns one value. This PROC SQL step
subsets the PROCLIB.PAYROLL table based on information in the PROCLIB.STAFF
table. (PROCLIB.PAYROLL is shown in “Example 2: Creating a Table from a Query's
Result” on page 247, and PROCLIB.STAFF is shown in “Example 4: Joining Two
Tables” on page 251.) PROCLIB.PAYROLL contains employee identification numbers
(IdNumber) and their salaries (Salary) but does not contain their names. If you want to
return only the row from PROCLIB.PAYROLL for one employee, then you can use a
subquery that queries the PROCLIB.STAFF table, which contains the employees'
identification numbers and their names (Lname and Fname).

proc sql;
 title 'Information for Earl Bowden';
 select *
 from proclib.payroll
 where idnumber=
 (select idnum
 from proclib.staff
 where upcase(lname)='BOWDEN');

Output 9.21 Query Output – One Value

Subqueries can return multiple values. The following example uses the tables
PROCLIB.DELAY and PROCLIB.MARCH. These tables contain information about the
same flights and have the Flight column in common. The following subquery returns all
the values for Flight in PROCLIB.DELAY for international flights. The values from the
subquery complete the WHERE clause in the outer query. Thus, when the outer query is
executed, only the international flights from PROCLIB.MARCH are in the output.

proc sql outobs=5;
 title 'International Flights from';
 title2 'PROCLIB.MARCH';
 select Flight, Date, Dest, Boarded
 from proclib.march
 where flight in
 (select flight
 from proclib.delay
 where destype='International');

344 Chapter 9 • SQL Procedure Components

Output 9.22 Query Output – Multiple Values

Sometimes it is helpful to compare a value with a set of values returned by a subquery.
The keywords ANY or ALL can be specified before a subquery when the subquery is the
right-hand operand of a comparison. If ALL is specified, then the comparison is true
only if it is true for all values that are returned by the subquery. If a subquery returns no
rows, then the result of an ALL comparison is true for each row of the outer query.

If ANY is specified, then the comparison is true if it is true for any one of the values that
are returned by the subquery. If a subquery returns no rows, then the result of an ANY
comparison is false for each row of the outer query.

The following example selects all of the employees in PROCLIB.PAYROLL who earn
more than the highest paid ME3:

proc sql;
title "Employees who Earn More than";
title2 "All ME's";
 select *
 from proclib.payroll
 where salary > all (select salary
 from proclib.payroll
 where jobcode='ME3');

sql-expression 345

Output 9.23 Query Output Using ALL Comparison

Note: See the first item in “Subqueries and Efficiency” on page 347 for a note about
efficiency when using ALL.

In order to visually separate a subquery from the rest of the query, you can enclose the
subquery in any number of pairs of parentheses.

Correlated Subqueries
In a correlated subquery, the WHERE expression in a subquery refers to values in a table
in the outer query. The correlated subquery is evaluated for each row in the outer query.
With correlated subqueries, PROC SQL executes the subquery and the outer query
together.

346 Chapter 9 • SQL Procedure Components

The following example uses the PROCLIB.DELAY and PROCLIB.MARCH tables. A
DATA step (“PROCLIB.DELAY” on page 381) creates PROCLIB.DELAY.
PROCLIB.MARCH is shown in “Example 13: Producing All the Possible Combinations
of the Values in a Column” on page 279. PROCLIB.DELAY has the Flight, Date, Orig,
and Dest columns in common with PROCLIB.MARCH:

proc sql outobs=5;
 title 'International Flights';
 select *
 from proclib.march
 where 'International' in
 (select destype
 from proclib.delay
 where march.Flight=delay.Flight);

The subquery resolves by substituting every value for MARCH.Flight into the
subquery's WHERE clause, one row at a time. For example, when MARCH.Flight=219,
the subquery resolves as follows:

1. PROC SQL retrieves all the rows from DELAY where Flight=219 and passes their
DESTYPE values to the WHERE clause.

2. PROC SQL uses the DESTYPE values to complete the WHERE clause:

where 'International' in
 ('International','International', ...)

3. The WHERE clause checks to determine whether International is in the list.
Because it is, all rows from MARCH that have a value of 219 for Flight become part
of the output.

The following output contains the rows from MARCH for international flights only.

Output 9.24 Correlated Subquery Output

Subqueries and Efficiency
• Use the MAX function in a subquery instead of the ALL keyword before the

subquery. For example, the following queries produce the same result, but the second
query is more efficient:

 proc sql;
 select * from proclib.payroll
 where salary> all(select salary
 from proclib.payroll

sql-expression 347

 where jobcode='ME3');

 proc sql;
 select * from proclib.payroll
 where salary> (select max(salary)
 from proclib.payroll
 where jobcode='ME3');

• With subqueries, use IN instead of EXISTS when possible. For example, the
following queries produce the same result, but the second query is usually more
efficient:

proc sql;
 select *
 from proclib.payroll p
 where exists (select *
 from staff s
 where p.idnum=s.idnum
 and state='CT');

proc sql;
 select *
 from proclib.payroll
 where idnum in (select idnum
 from staff
 where state='CT');

SUBSTRING Function
Returns a part of a character expression.

Syntax
SUBSTRING (sql-expression FROM start <FOR length>)

Required Arguments
sql-expression

must be a character string and is described in “sql-expression” on page 340.

start
is a number (not a variable or column name) that specifies the position, counting
from the left end of the character string, at which to begin extracting the substring.

length
is a number (not a variable or column name) that specifies the length of the substring
that is to be extracted.

Details
The SUBSTRING function operates on character strings. SUBSTRING returns a
specified part of the input character string, beginning at the position that is specified by
start. If length is omitted, then the SUBSTRING function returns all characters from start
to the end of the input character string. The values of start and length must be numbers
(not variables) and can be positive, negative, or zero.

348 Chapter 9 • SQL Procedure Components

If start is greater than the length of the input character string, then the SUBSTRING
function returns a zero-length string.

If start is less than 1, then the SUBSTRING function begins extraction at the beginning
of the input character string.

If length is specified, then the sum of start and length cannot be less than start or an error
is returned. If the sum of start and length is greater than the length of the input character
string, then the SUBSTRING function returns all characters from start to the end of the
input character string. If the sum of start and length is less than 1, then the SUBSTRING
function returns a zero-length string.

Note: The SUBSTRING function is provided for compatibility with the ANSI SQL
standard. You can also use the SAS function SUBSTR.

summary-function
Performs statistical summary calculations.

Restriction: A summary function cannot appear in an ON clause or a WHERE clause.

See: “GROUP BY Clause” on page 301
“HAVING Clause” on page 302
“SELECT Clause” on page 291
“table-expression” on page 357

Examples: “Example 8: Creating a View from a Query's Result” on page 265
“Example 12: Joining Two Tables and Calculating a New Value” on page 276
“Example 15: Counting Missing Values with a SAS Macro” on page 288

Syntax
summary-function (<DISTINCT | ALL> sql-expression)

Required Arguments
summary-function

is one of the following:

AVG|MEAN
arithmetic mean or average of values

COUNT|FREQ|N
number of nonmissing values

CSS
corrected sum of squares

CV
coefficient of variation (percent)

MAX
largest value

MIN
smallest value

summary-function 349

NMISS
number of missing values

PRT
is the two-tailed p-value for Student's t statistic, T with n - 1 degrees of freedom.

RANGE
range of values

STD
standard deviation

STDERR
standard error of the mean

SUM
sum of values

SUMWGT
sum of the WEIGHT variable values1

T
Student's t value for testing the hypothesis that the population mean is zero

USS
uncorrected sum of squares

VAR
variance

For a description and the formulas used for these statistics, see “SAS Elementary
Statistics Procedures” in Chapter 1 of Base SAS Procedures Guide.

DISTINCT
specifies that only the unique values of an SQL expression be used in the calculation.

ALL
specifies that all values of an SQL expression be used in the calculation. If neither
DISTINCT nor ALL is specified, then ALL is used.

sql-expression
is described in “sql-expression” on page 340.

Details

Summarizing Data
Summary functions produce a statistical summary of the entire table or view that is listed
in the FROM clause or for each group that is specified in a GROUP BY clause. If
GROUP BY is omitted, then all the rows in the table or view are considered to be a
single group. These functions reduce all the values in each row or column in a table to
one summarizing or aggregate value. For this reason, these functions are often called
aggregate functions. For example, the sum (one value) of a column results from the
addition of all the values in the column.

Counting Rows
The COUNT function counts rows. COUNT(*) returns the total number of rows in a
group or in a table. If you use a column name as an argument to COUNT, then the result
is the total number of rows in a group or in a table that have a nonmissing value for that

1 Currently, there is no way to designate a WEIGHT variable for a table in PROC SQL. Thus, each row (or observation) has a weight
of 1.

350 Chapter 9 • SQL Procedure Components

column. If you want to count the unique values in a column, then specify
COUNT(DISTINCT column).

If the SELECT clause of a table expression contains one or more summary functions and
that table expression resolves to no rows, then the summary function results are missing
values. The following are exceptions that return zeros:

• COUNT(*)

• COUNT(<DISTINCT> sql-expression)

• NMISS(<DISTINCT> sql-expression)

See “Example 8: Creating a View from a Query's Result” on page 265 and “Example 15:
Counting Missing Values with a SAS Macro” on page 288 for examples.

Calculating Statistics Based on the Number of Arguments
The number of arguments that is specified in a summary function affects how the
calculation is performed. If you specify a single argument, then the values in the column
are calculated. If you specify multiple arguments, then the arguments or columns that are
listed are calculated for each row.

Note: When more than one argument is used within an SQL aggregate function, the
function is no longer considered to be an SQL aggregate or summary function. If
there is a like-named Base SAS function, then PROC SQL executes the Base SAS
function, and the results that are returned are based on the values for the current row.
If no like-named Base SAS function exists, then an error will occur. For example, if
you use multiple arguments for the AVG function, an error will occur because there
is no AVG function for Base SAS.

For example, consider calculations on the following table.

data summary;
 input X Y Z;
 datalines;
1 3 4
2 4 5
8 9 4
4 5 4
;

proc sql;
 title 'Summary Table';
 select * from summary;

If you use one argument in the function, then the calculation is performed on that
column only. If you use more than one argument, then the calculation is performed on

summary-function 351

each row of the specified columns. In the following PROC SQL step, the MIN and MAX
functions return the minimum and maximum of the columns that they are used with. The
SUM function returns the sum of each row of the columns specified as arguments:

proc sql;
 select min(x) as Colmin_x,
 min(y) as Colmin_y,
 max(z) as Colmax_z,
 sum(x,y,z) as Rowsum
 from summary;

Output 9.25 Summary Functions

Remerging Data
When you use a summary function in a SELECT clause or a HAVING clause, you might
see the following message in the SAS log:

NOTE: The query requires remerging summary
 statistics back with the original
 data.

The process of remerging involves two passes through the data. On the first pass, PROC
SQL

• calculates and returns the value of summary functions. It then uses the result to
calculate the arithmetic expressions in which the summary function participates.

• groups data according to the GROUP BY clause.

On the second pass, PROC SQL retrieves any additional columns and rows that it needs
to show in the output.

Note: To specify that PROC SQL not process queries that use remerging of data, use
either the PROC SQL NOREMERGE option or the NOSQLREMERGE system
option. If remerging is attempted when the NOMERGE option or the
NOSQLREMERGE system option is set, an error is written to the SAS log. For more
information, see the “REMERGE|NOREMERGE” on page 222 and the
“SQLREMERGE System Option” on page 370.

The following examples use the PROCLIB.PAYROLL table (shown in “Example 2:
Creating a Table from a Query's Result” on page 247) to show when remerging of data
is and is not necessary.

The first query requires remerging. The first pass through the data groups the data by
Jobcode and resolves the AVG function for each group. However, PROC SQL must
make a second pass in order to retrieve the values of IdNumber and Salary.

352 Chapter 9 • SQL Procedure Components

proc sql outobs=10;
 title 'Salary Information';
 title2 '(First 10 Rows Only)';
 select IdNumber, Jobcode, Salary,
 avg(salary) as AvgSalary
 from proclib.payroll
 group by jobcode;

Output 9.26 Salary Information That Required Remerging

You can change the previous query to return only the average salary for each jobcode.
The following query does not require remerging because the first pass of the data does
the summarizing and the grouping. A second pass is not necessary.

proc sql outobs=10;
 title 'Average Salary for Each Jobcode';
 select Jobcode, avg(salary) as AvgSalary
 from proclib.payroll
 group by jobcode;

summary-function 353

Output 9.27 Salary Information That Did Not Require Remerging

When you use the HAVING clause, PROC SQL might have to remerge data to resolve
the HAVING expression.

First, consider a query that uses HAVING but that does not require remerging. The
query groups the data by values of Jobcode, and the result contains one row for each
value of Jobcode and summary information for people in each Jobcode. On the first pass,
the summary functions provide values for the Number, Average Age, and Average
Salary columns. The first pass provides everything that PROC SQL needs to resolve
the HAVING clause, so no remerging is necessary.

proc sql outobs=10;
title 'Summary Information for Each Jobcode';
title2 '(First 10 Rows Only)';
 select Jobcode,
 count(jobcode) as number
 label='Number',
 avg(int((today()-birth)/365.25))
 as avgage format=2.
 label='Average Age',
 avg(salary) as avgsal format=dollar8.
 label='Average Salary'
 from proclib.payroll
 group by jobcode
 having avgage ge 30;

354 Chapter 9 • SQL Procedure Components

Output 9.28 Jobcode Information That Did Not Require Remerging

In the following query, PROC SQL remerges the data because the HAVING clause uses
the SALARY column in the comparison and SALARY is not in the GROUP BY clause.

proc sql outobs=10;
title 'Employees who Earn More than the';
title2 'Average for Their Jobcode';
title3 '(First 10 Rows Only)';
 select Jobcode, Salary,
 avg(salary) as AvgSalary
 from proclib.payroll
 group by jobcode
 having salary > AvgSalary;

summary-function 355

Output 9.29 Jobcode Information That Did Require Remerging

Keep in mind that PROC SQL remerges data when

• the values returned by a summary function are used in a calculation. For example,
the following query returns the values of X and the percentage of the total for each
row. On the first pass, PROC SQL computes the sum of X, and on the second pass
PROC SQL computes the percentage of the total for each value of X:

data summary;
 input x;
 datalines;
32
86
49
49
;

proc sql;
 title 'Percentage of the Total';
 select X, (100*x/sum(X)) as Pct_Total
 from summary;

 Percentage of the Total

 x Pct_Total

 32 14.81481
 86 39.81481
 49 22.68519
 49 22.68519

356 Chapter 9 • SQL Procedure Components

• the values returned by a summary function are compared to values of a column that
is not specified in the GROUP BY clause. For example, the following query uses the
PROCLIB.PAYROLL table. PROC SQL remerges data because the column Salary
is not specified in the GROUP BY clause:

proc sql;
 select jobcode, salary,
 avg(salary) as avsal
 from proclib.payroll
 group by jobcode
 having salary > avsal;

• a column from the input table is specified in the SELECT clause and is not specified
in the GROUP BY clause. This rule does not refer to columns used as arguments to
summary functions in the SELECT clause.

For example, in the following query, the presence of IdNumber in the SELECT
clause causes PROC SQL to remerge the data because IdNumber is not involved in
grouping or summarizing during the first pass. In order for PROC SQL to retrieve
the values for IdNumber, it must make a second pass through the data.

proc sql;
 select IdNumber, jobcode,
 avg(salary) as avsal
 from proclib.payroll
 group by jobcode;

table-expression
Defines part or all of a query expression.

See: “query-expression” on page 332
“SELECT Statement” on page 243

Syntax
SELECT <DISTINCT> object-item<, … object-item>

<INTO :macro-variable-specification<, … :macro-variable-specification>>
FROM from-list
<WHERE sql-expression>
<GROUP BYgroup-by-item<, … group-by-item>>
<HAVING sql-expression>

Details
A table expression is a SELECT statement. It is the fundamental building block of most
SQL procedure statements. You can combine the results of multiple table expressions
with set operators, which creates a query expression. Use one ORDER BY clause for an
entire query expression. Place a semicolon only at the end of the entire query expression.
A query expression is often only one SELECT statement or table expression.

table-expression 357

UPPER Function
Converts the case of a character string to uppercase.

See: “LOWER Function” on page 332

Syntax
UPPER (sql-expression)

Required Argument
sql-expression

must be a character string and is described in “sql-expression” on page 340.

Details
The UPPER function operates on character strings. UPPER converts the case of its
argument to all uppercase.

358 Chapter 9 • SQL Procedure Components

Part 3

Appendixes

Appendix 1
SQL Macro Variables and System Options . 361

Appendix 2
PROC SQL and the ANSI Standard . 373

Appendix 3
Source for SQL Examples . 379

359

360

Appendix 1

SQL Macro Variables and System
Options

Dictionary . 361
SQLCONSTDATETIME System Option . 361
SQLGENERATION= System Option . 362
SQLMAPPUTTO= System Option . 365
SQLREDUCEPUT= System Option . 366
SQLREDUCEPUTOBS= System Option . 367
SQLREDUCEPUTVALUES= System Option . 368
SQLREMERGE System Option . 370
SQLUNDOPOLICY= System Option . 370
SYS_SQLSETLIMIT Macro Variable . 372

Dictionary

SQLCONSTDATETIME System Option
Specifies whether the SQL procedure replaces references to the DATE, TIME, DATETIME, and TODAY
functions in a query with their equivalent constant values before the query executes.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Files: SAS Files
System administration: SQL

PROC OPTIONS
GROUP=

SASFILES
SQL

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in Chapter 1 of SAS System Options: Reference.

Syntax
SQLCONSTDATETIME | NOSQLCONSTDATETIME

361

Syntax Description
SQLCONSTDATETIME

specifies that the SQL procedure is to replace references to the DATE, TIME,
DATETIME, and TODAY functions with their equivalent numeric constant values.

NOSQLCONSTDATETIME
specifies that the SQL procedure is not to replace references to the DATE, TIME,
DATETIME, and TODAY functions with their equivalent numeric constant values.

Details
When the SQLCONSTDATETIME system option is set, the SQL procedure evaluates
the DATE, TIME, DATETIME, and TODAY functions in a query once, and uses those
values throughout the query. Computing these values once ensures consistency of results
when the functions are used multiple times in a query or when the query executes the
functions close to a date or time boundary.

When the NOSQLCONSTDATETIME system option is set, the SQL procedure
evaluates these functions in a query each time it processes an observation.

If both the SQLREDUCEPUT system option and the SQLCONSTDATETIME system
option are specified, the SQL procedure replaces the DATE, TIME, DATETIME, and
TODAY functions with their respective values in order to determine the PUT function
value before the query executes:

select x from &lib..c where (put(bday, date9.) = put(today(), date9.));

Note: The value that is specified in the SQLCONSTDATETIME system option is in
effect for all SQL procedure statements, unless the CONSTDATETIME option in
the PROC SQL statement is set. The value of the CONSTDATETIME option takes
precedence over the SQLCONSTDATETIME system option. However, changing the
value of the CONSTDATETIME option does not change the value of the
SQLCONSTDATETIME system option.

See Also
• “Improving Query Performance” on page 140

Procedure Statement Options:

• CONSTDATETIME option on page 217

System Options:

• “SQLREDUCEPUT= System Option” on page 366

SQLGENERATION= System Option
Specifies whether and when SAS procedures generate SQL for in-database processing of source data.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: System administration: Performance

Default: (NONE DBMS='ASTER DB2 GREENPLM NETEZZA ORACLE TERADATA')

362 Appendix 1 • SQL Macro Variables and System Options

Restriction: For DBMS= and EXCLUDEDB= values, the maximum length of an engine name is
eight characters. For the EXCLUDEPROC= value, the maximum length of a
procedure name is 16 characters. An engine can appear only once, and a procedure
can appear only once for a given engine.

Data source: Aster nCluster, DB2 under UNIX and PC Hosts, Greenplum, Netezza, Oracle,
Teradata

See: SQLGENERATION= LIBNAME option (includes examples), and also “Running In-
Database Procedures” in SAS In-Database Products: User’s Guide

Syntax
SQLGENERATION=<(>NONE | DBMS <DBMS='engine1 engine2…enginen '>

<EXCLUDEDB=engine | 'engine1…enginen'>
<EXCLUDEPROC="engine='proc1…procn'

enginen='proc1…procn' "><)>

SQLGENERATION=" "

Syntax Description
NONE

prevents those SAS procedures that are enabled for in-database processing from
generating SQL for in-database processing. This is a primary state.

DBMS
allows SAS procedures that are enabled for in-database processing to generate SQL
for in-database processing of DBMS tables through supported SAS/ACCESS
engines. This is a primary state.

DBMS='engine1…enginen'
specifies one or more SAS/ACCESS engines. It modifies the primary state.

EXCLUDEDB=engine | 'engine1…enginen'
prevents SAS procedures from generating SQL for in-database processing for one or
more specified SAS/ACCESS engines.

EXCLUDEPROC="engine='proc1…procn' enginen='proc1…procn' "
identifies engine-specific SAS procedures that you do not want to run inside the
database.

" "
resets the value to the default that was shipped.

Details
Use this option with such procedures as PROC FREQ to indicate that SQL is generated
for in-database processing of DBMS tables through supported SAS/ACCESS engines.

You must specify NONE, DBMS, or both. One or both of these arguments indicates the
primary state.

The maximum length of the option value is 4096. Also, parentheses are required when
this option value contains multiple keywords.

Not all procedures support SQL generation for in-database processing for every engine
type. If you specify a setting that is not supported, an error message indicates the level of
SQL generation that is not supported, and the procedure can reset to the default so that

SQLGENERATION= System Option 363

source table records can be read and processed within SAS. If this is not possible, the
procedure ends and sets SYSERR= as needed.

You can specify different SQLGENERATION= values for the DATA= and OUT= data
sets by using different LIBNAME statements for each of these data sets.

Here is how SAS/ACCESS handles precedence.

Table A1.1 Precedence of Values for SQLGENERATION= LIBNAME and System Options

LIBNAME
Option

PROC
EXCLUDE on

System Option? Engine Type

Engine
Specified on

System Option
Resulting

Value
From

(option)

not set

NONE

DBMS

yes database interface NONE

DBMS

NONE

EXCLUDEDB

system

NONE no NONE LIBNAME

DBMS DBMS

not set NONE NONE system

DBMS DBMS

no SQL generated for this
database host or database
version

NONE

DBMS

NONE

NONE

DBMS

LIBNAME

not set Base system

NONE

DBMS

LIBNAME

Example
Here is the default that is shipped with the product.

options sqlgeneration='';
proc options option=sqlgeneration
run;

SAS procedures generate SQL for in-database processing for all databases except DB2
in this example.

options sqlgeneration='';
options sqlgeneration=(DBMS EXCLUDEDB='DB2');
proc options option=sqlgeneration;
run;

In this example, in-database processing occurs only for Teradata. SAS procedures that
are run on other databases do not generate SQL for in-database processing.

options sqlgeneration='';
options SQLGENERATION=(NONE DBMS='Teradata');

364 Appendix 1 • SQL Macro Variables and System Options

proc options option=sqlgeneration;
run;

For this example, SAS procedures generate SQL for Teradata and Oracle in-database
processing. However, no SQL is generated for PROC1 and PROC2 in Oracle.

options sqlgeneration='';
Options SQLGENERATION = (NONE DBMS='Teradata Oracle'
 EXCLUDEPROC="oracle='proc1 proc2'");
proc options option=sqlgeneration;
run;

SQLMAPPUTTO= System Option
Specifies whether the PUT function is mapped to the SAS_PUT() function for a database, possible also
where the SAS_PUT() function is mapped.

Valid in: configuration file, SAS invocation, OPTIONS statement

Category: Files: SAS files

Default: SAS_PUT

Data source: DB2 under UNIX and PC Hosts, Netezza, Teradata

See: “SQL_FUNCTIONS= LIBNAME Option” in SAS/ACCESS for Relational Databases:
Reference, SAS In-Database Products: User’s Guide

Syntax
SQLMAPPUTTO= NONE | SAS_PUT | (database.SAS_PUT)

Syntax Description
NONE

specifies to PROC SQL that no PUT mapping is to occur.

SAS_PUT
specifies that the PUT function be mapped to the SAS_PUT() function.

database.SAS_PUT
specifies the database name.

T I P It is not necessary that the format definitions and the SAS_PUT() function
reside in the same database as the one that contains the data that you want to
format. You can use the database.SAS_PUT argument to specify the database
where the format definitions and the SAS_PUT() function have been published.

T I P The database name can be a multilevel name and it can include blanks.

Requirement: If you specify a database name, you must enclose the entire argument
in parentheses.

Details
The format publishing macros deploy or publish, the PUT function implementation to
the database as a new function named SAS_PUT(). The format publishing macros also
publish both user-defined formats and formats that SAS supplies that you create using
PROC FORMAT. The SAS_PUT() function supports the use of SAS formats, and you

SQLMAPPUTTO= System Option 365

can use it in SQL queries that SAS submits to the database so that the entire SQL query
can be processed inside the database. You can also use it in conjunction with in-database
procedures.

You can use this option with the SQLREDUCEPUT=, SQLREDUCEPUTOBS, and
SQLREDUCEPUTVALUES= system options. For more information about these
options, see SAS SQL Procedure User's Guide.

SQLREDUCEPUT= System Option
For the SQL procedure, specifies the engine type to use to optimize a PUT function in a query. The PUT
function is replaced with a logically equivalent expression.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Files: SAS Files
System administration: SQL
System administration: Performance

PROC OPTIONS
GROUP=

SASFILES
SQL
PERFORMANCE

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in Chapter 1 of SAS System Options: Reference.

Syntax
SQLREDUCEPUT= ALL | NONE | DBMS | BASE

Syntax Description
ALL

specifies to consider the optimization of all PUT functions, regardless of the engine
that is used by the query to access the data.

NONE
specifies to not optimize any PUT function.

DBMS
specifies to consider the optimization of all PUT functions in a query performed by a
SAS/ACCESS engine. This is the default.
Requirement: The first argument to the PUT function must be a variable that is

obtained by a table. The table must be accessed using a SAS/ACCESS engine.

BASE
specifies to consider the optimization of all PUT functions in a query performed by a
SAS/ACCESS engine or a Base SAS engine.

Details
If you specify the SQLREDUCEPUT= system option, SAS optimizes the PUT function
before the query is executed. If the query also contains a WHERE clause, the evaluation
of the WHERE clause is simplified. The following SELECT statements are examples of
queries that are optimized if the SQLREDUCEPUT= option is set to any value other
than none:

366 Appendix 1 • SQL Macro Variables and System Options

select x, y from &lib..b where (PUT(x, abc.) in ('yes', 'no'));
select x from &lib..a where (PUT(x, udfmt.) = trim(left('small')));

If both the SQLREDUCEPUT= system option and the SQLCONSTDATETIME system
option are specified, PROC SQL replaces the DATE, TIME, DATETIME, and TODAY
functions with their respective values to determine the PUT function value before the
query executes.

The following two SELECT clauses show the original query and optimized query:

select x from &lib..c where (put(bday, date9.) = put(today(), date9.));

Here, the SELECT clause is optimized.

select x from &lib..c where (x = '17MAR2011'D);

If a query does not contain the PUT function, it is not optimized.

Note: The value that is specified in the SQLREDUCEPUT= system option is in effect
for all SQL procedure statements, unless the PROC SQL REDUCEPUT= option is
set. The value of the REDUCEPUT= option takes precedence over the
SQLREDUCEPUT= system option. However, changing the value of the
REDUCEPUT= option does not change the value of the SQLREDUCEPUT= system
option.

See Also
• “Improving Query Performance” on page 140

Procedure Statement Options:

• REDUCEPUT= option on page 220

System Options:

• “SQLCONSTDATETIME System Option” on page 361

• “SQLREDUCEPUTOBS= System Option” on page 367

SQLREDUCEPUTOBS= System Option
For the SQL procedure, when the SQLREDUCEPUT= system option is set to DBMS, BASE, or ALL,
specifies the minimum number of observations that must be in a table for PROC SQL to optimize the PUT
function in a query.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Files: SAS Files
System administration: SQL
System administration: Performance

PROC OPTIONS
GROUP=

SASFILES
SQL
PERFORMANCE

Interactions: If the SQLREDUCEPUT= system option is set to DBMS, BASE, or ALL, conditions
for both the SQLREDUCEPUTOBS= and SQLREDUCEPUTVALUES= system
options must be met for PROC SQL to optimize the PUT function.

SQLREDUCEPUTOBS= System Option 367

The SQLREDUCEPUTOBS= system option works only for DBMSs that record the
number of observations in a table. If your DBMS does not record the number of
observations, but you create row counts on your table, the SQLREDUCEPUTOBS=
option will work.

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in Chapter 1 of SAS System Options: Reference.

Syntax
SQLREDUCEPUTOBS= n

Syntax Description
n

specifies the minimum number of observations that must be in a table for PROC
SQL to optimize the PUT function in a query.
Default: 0, which indicates that there is no minimum number of observations in a

table for PROC SQL to optimize the PUT function.
Range: 0–263–1, or approximately 9.2 quintillion
Requirement: n must be an integer

Details
For databases that allow implicit pass-through when the row count for a table is not
known, PROC SQL allows the PUT function to be optimized in the query, and the query
is executed by the database. When the SQLREDUCEPUT= system option is set to
DBMS, BASE, or ALL, PROC SQL considers the values of both the
SQLREDUCEPUTVALUES= and SQLREDUCEPUTOBS= system options, and
determines whether to optimize the PUT function.

For databases that do not allow implicit pass-through, PROC SQL does not optimize the
PUT function, and more of the query is executed by SAS.

See Also
• “Improving Query Performance” on page 140

System Options:

• “SQLREDUCEPUT= System Option” on page 366

• “SQLREDUCEPUTVALUES= System Option” on page 368

SQLREDUCEPUTVALUES= System Option
For the SQL procedure, when the SQLREDUCEPUT= system option is set to DBMS, BASE, or ALL,
specifies the maximum number of SAS format values that can exist in a PUT function expression for PROC
SQL to optimize the PUT function in a query.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Files: SAS Files
System administration: SQL

368 Appendix 1 • SQL Macro Variables and System Options

System administration: Performance

PROC OPTIONS
GROUP=

SASFILES
SQL
PERFORMANCE

Interaction: If the SQLREDUCEPUT= system option is set to DBMS, BASE, or ALL, conditions
for both the SQLREDUCEPUTVALUES= and SQLREDUCEPUTOBS= system
options must be met for PROC SQL to optimize the PUT function.

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in Chapter 1 of SAS System Options: Reference.

Syntax
SQLREDUCEPUTVALUES= n

Syntax Description
n

specifies the maximum number of SAS format values that can exist in a PUT
function expression for PROC SQL to optimize the PUT function in a query.
Default: 100
Range: 100 – 3,000
Requirement: n must be an integer
Interaction: If the number of SAS format values in a PUT function expression is

greater than this value, PROC SQL does not optimize the PUT function.

Details
Some formats, especially user-defined formats, can contain many format values.
Depending on the number of matches for a PUT function expression, the resulting
expression can list many format values. If the number of format values becomes too
large, query performance can degrade. When the SQLREDUCEPUT= system option is
set to DBMS, BASE, or ALL, PROC SQL considers the values of both the
SQLREDUCEPUTVALUES= and SQLREDUCEPUTOBS= system options, and
determines whether to optimize the PUT function.

T I P The value for SQLREDUCEPUTVALUES= is used for each individual
optimization. For example, if you have a PUT function in a WHERE clause, and
another PUT function in a GROUP BY clause, the value of
SQLREDUCEPUTVALUES= is applied separately for each clause.

See Also
• “Improving Query Performance” on page 140

System Options:

• “SQLREDUCEPUT= System Option” on page 366

• “SQLREDUCEPUTOBS= System Option” on page 367

SQLREDUCEPUTVALUES= System Option 369

SQLREMERGE System Option
Specifies whether PROC SQL can process queries that use remerged data.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Files: SAS Files
System administration: SQL

PROC OPTIONS
GROUP=

SASFILES
SQL

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in Chapter 1 of SAS System Options: Reference.

Syntax
SQLREMERGE | NOSQLREMERGE

Syntax Description
SQLREMERGE

specifies that PROC SQL can process queries that use remerged data.

NOSQLREMERGE
specifies that PROC SQL cannot process queries that use remerged data.

Details
The remerge feature of PROC SQL makes two passes through a table. Data that is
created in the first pass is used in the second pass to complete a query. When the
NOSQLREMERGE system option is specified, PROC SQL cannot process this
remerging of data. If remerging is attempted when the NOSQLREMERGE system
option is specified, an error is written to the SAS log.

See Also
• “Improving Query Performance” on page 140

Procedure Statement Options:

• REMERGE option on page 222

• “summary-function” on page 349

SQLUNDOPOLICY= System Option
Specifies how PROC SQL handles updated data if errors occur while you are updating data. You can use
UNDO_POLICY= to control whether your changes are permanent.

Valid in: configuration file, SAS invocation, Options statement

Categories: Files: SAS Files

370 Appendix 1 • SQL Macro Variables and System Options

System administration: SQL

PROC OPTIONS
GROUP=

SASFILES
SQL

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in Chapter 1 of SAS System Options: Reference.

Syntax
SQLUNDOPOLICY=NONE | OPTIONAL | REQUIRED

Syntax Description
NONE

keeps any updates or inserts.

OPTIONAL
reverses any updates or inserts that it can reverse reliably.

REQUIRED
reverses all inserts or updates that have been done to the point of the error. This is
the default.
CAUTION: Some UNDO operations cannot be done reliably. In some cases, the

UNDO operation cannot be done reliably. When a change cannot be reversed,
PROC SQL issues an error message and does not execute the statement. For
example, when a program uses a SAS/ACCESS view, or when a SAS data set is
accessed through a SAS/SHARE server and is opened with the data set option
CNTLLEV=RECORD, you cannot reliably reverse your changes.

CAUTION: Some UNDO operations might not reverse changes. When multiple
transactions are made to the same record, PROC SQL might not reverse a
change. PROC SQL issues an error message instead. For example, if an error
occurs during an insert, PROC SQL can delete a record that another user
updated. In that case, the UNDO operation does not reverse the change, and an
error message is issued.

Details
The value that is specified in the SQLUNDOPOLICY= system option is in effect for all
SQL procedure statements, unless the PROC SQL UNDO_POLICY= option is set. The
value of the UNDO_POLICY= option takes precedence over the SQLUNDOPOLICY=
system option. The RESET statement can also be used to set or reset the
UNDO_POLICY= option. However, changing the value of the UNDO_POLICY=
option does not change the value of the SQLUNDOPOLICY= system option. After the
procedure completes, it reverts to the value of the SQLUNDOPOLICY= system option.

If you are updating a data set using the SAS Scalable Performance Data Engine, you can
significantly improve processing performance by setting SQLUNDOPOLICY=NONE.
However, ensure that NONE is an appropriate setting for your application.

See Also

Procedure Statement

• UNDO_POLICY on page 223

SQLUNDOPOLICY= System Option 371

SYS_SQLSETLIMIT Macro Variable
For the SQL procedure, specifies the maximum number of values that is used to optimize a hash join
during DBMS processing.

Syntax
SYS_SQLSETLIMIT= n;

Required Argument
n

specifies the maximum number of values in the IN condition that is passed to the
DBMS for processing,
Default: 1024
Restriction: The SYS_SQLSETLIMIT macro variable affects only certain hash

joins.
Example:

%let SYS_SQLSETLIMIT=250;
%let SYS_SQLSETLIMIT=1200;

Details

Hash Join
To optimize performance, the SQL procedure might use a hash join when an index join
is eliminated as a possibility. With a hash join, the smaller table is reconfigured in
memory as a hash table. PROC SQL sequentially scans the larger table, and performs a
row-by-row hash lookup against the small table to form the result set. A memory-sizing
formula determines whether a hash join is used. The formula is based on the PROC SQL
BUFFERSIZE option, whose default value is 64 KB. On a memory-rich system, you
should consider increasing BUFFERSIZE to increase the likelihood that a hash join is
used.

372 Appendix 1 • SQL Macro Variables and System Options

Appendix 2

PROC SQL and the ANSI
Standard

Compliance
PROC SQL follows most of the guidelines set by the American National Standards
Institute (ANSI) in its implementation of SQL. However, it is not fully compliant with
the current ANSI standard for SQL.2

The SQL research project at SAS has focused primarily on the expressive power of SQL
as a query language. Consequently, some of the database features of SQL have not yet
been implemented in PROC SQL.

SQL Procedure Enhancements

Reserved Words
PROC SQL reserves very few keywords, and then, only in certain contexts. The ANSI
standard reserves all SQL keywords in all contexts. For example, according to the
standard, you cannot name a column GROUP because of the keywords GROUP BY.

The following words are reserved in PROC SQL:

• The keyword CASE is always reserved. Its use in the CASE expression (an SQL2
feature) precludes its use as a column name.

If you have a column named CASE in a table, and you want to specify it in a PROC
SQL step, then you can use the SAS data set option RENAME= to rename that
column for the duration of the query. You can enclose CASE in double quotation
marks (“CASE”), and set the PROC SQL option DQUOTE=ANSI.

• The keywords AS, ON, FULL, JOIN, LEFT, FROM, WHEN, WHERE, ORDER,
GROUP, RIGHT, INNER, OUTER, UNION, EXCEPT, HAVING, and
INTERSECT cannot be used for table aliases. These keywords introduce clauses that
appear after a table name. Because the table alias is optional, PROC SQL handles
this ambiguity by assuming that any one of these words introduces the corresponding
clause and is not the table alias. If you want to use one of these keywords as a table
alias, then enclose the keyword in double quotation marks, and set the PROC SQL
option DQUOTE=ANSI.

• The keyword USER is reserved for the current user ID. If you specify USER in a
SELECT statement in conjunction with a CREATE TABLE statement, then the
column is created in the table with a temporary column name that is similar to
_TEMA001. If you specify USER in a SELECT statement without a CREATE
TABLE statement, then the column is written to the output without a column
heading. In either case, the value for the column varies by operating environment,

2 International Organization for Standardization (ISO): Database SQL. Document ISO/IEC 9075:1992. Also, as American National
Standards Institute (ANSI) Document ANSI X3.135-1992.

373

but is typically the user ID of the user who is submitting the program, or the value of
the &SYSJOBID automatic macro variable.

If you have a column named USER in a table, and you want to specify it in a PROC
SQL step, then you can use the SAS data set option RENAME= to rename that
column for the duration of the query. You can enclose USER in double quotation
marks (“USER”), and set the PROC SQL option DQUOTE=ANSI.

Column Modifiers
PROC SQL supports the SAS INFORMAT=, FORMAT=, and LABEL= modifiers for
expressions in the SELECT statement. These modifiers control the format in which
output data is displayed and labeled.

Alternate Collating Sequences
PROC SQL enables you to specify an alternate collating (sorting) sequence to be used
when you specify the ORDER BY clause. For more information about the SORTSEQ=
option, see “PROC SQL Statement” on page 215.

ORDER BY Clause in a View Definition
PROC SQL permits you to specify an ORDER BY clause in a CREATE VIEW
statement. When the view is queried, its data is sorted based on the specified order,
unless a query against that view includes a different ORDER BY clause. For more
information, see “CREATE VIEW Statement” on page 234.

CONTAINS Condition
PROC SQL enables you to test whether a string is part of a column's value when you
specify the CONTAINS condition. For more information, see “CONTAINS Condition”
on page 314.

Inline Views
The ability to code nested query expressions in the FROM clause is a requirement of the
ANSI standard. PROC SQL supports nested coding.

Outer Joins
The ability to include columns that both match and do not match in a join expression is a
requirement of the ANSI standard. PROC SQL supports this ability.

Arithmetic Operators
PROC SQL supports the SAS exponentiation (**) operator. PROC SQL uses the
notation <> to mean not equal.

Orthogonal Expressions
PROC SQL enables the combination of comparison, Boolean, and algebraic expressions.
For example, (X=3)*7 yields a value of 7 if X=3 is true because true is defined to be 1.
If X=3 is false, then it resolves to 0, and the entire expression yields a value of 0.

PROC SQL permits a subquery in any expression. This feature is required by the ANSI
standard. Therefore, you can have a subquery on the left side of a comparison operator in
the WHERE expression.

PROC SQL permits you to order and group data by any type of mathematical expression
(except a mathematical expression including a summary function) using ORDER BY
and GROUP BY clauses. You can group by an expression that appears in the SELECT

374 Appendix 2 • PROC SQL and the ANSI Standard

statement by using the integer that represents the expression's ordinal position in the
SELECT statement. You are not required to select the expression by which you are
grouping or ordering. For more information, see “ORDER BY Clause” on page 303 and
“GROUP BY Clause” on page 301.

Set Operators
The set operators UNION, INTERSECT, and EXCEPT are required by the ANSI
standard. PROC SQL provides these operators and the OUTER UNION operator.

The ANSI standard requires that the tables being operated on have the same number of
columns with matching data types. The SQL procedure works on tables that have the
same number of columns, and it works on tables that have a different number of columns
by creating virtual columns so that a query can evaluate correctly. For more information,
see “query-expression” on page 332.

Statistical Functions
PROC SQL supports many more summary functions than required by the ANSI standard
for SQL.

PROC SQL supports remerging summary function results into the table's original data.
For example, computing the percentage of total is achieved with 100*x/SUM(x) in
PROC SQL. For more information about summary functions and remerging data, see
“summary-function” on page 349.

SAS DATA Step Functions
PROC SQL supports many of the functions available in the SAS DATA step. Some of
the functions that are not supported are the variable information functions and functions
that work with arrays of data. Other SQL databases support their own sets of functions.

PROC FCMP Functions
PROC SQL supports any user-written functions, except those functions with array
elements that are created using Chapter 19, “FCMP Procedure” in Base SAS Procedures
Guide.

SQL Procedure Omissions

COMMIT Statement
The COMMIT statement is not supported.

ROLLBACK Statement
The ROLLBACK statement is not supported. The PROC SQL UNDO_POLICY= option
or the SQLUNDOPOLICY system option addresses rollback. See the description of the
UNDO_POLICY= option in “PROC SQL Statement” on page 215 or in
the“SQLUNDOPOLICY= System Option” on page 370.

Identifiers and Naming Conventions
In SAS, table names, column names, and aliases are limited to 32 characters, and can
contain mixed case. For more information about SAS naming conventions, see Base SAS
Utilities: Reference. The ANSI standard for SQL allows longer names.

PROC SQL and the ANSI Standard 375

Granting User Privileges
The GRANT statement, PRIVILEGES keyword, and authorization-identifier features of
SQL are not supported. You might want to use operating-environment-specific means of
security instead.

Three-Valued Logic
ANSI-compatible SQL has three-valued logic. That is, it has special cases for handling
comparisons involving NULL values. Any value compared with a NULL value
evaluates to NULL.

PROC SQL follows the SAS convention for handling missing values. When numeric
NULL values are compared with non-NULL numbers, the NULL values are less than or
smaller than all the non-NULL values. When character NULL values are compared with
non-NULL characters, the character NULL values are treated as a string of blanks.

Embedded SQL
Currently, there is no provision for embedding PROC SQL statements in other SAS
programming environments, such as the DATA step or SAS/IML software.

Column Alias Exceptions
The development scope of PROC SQL and its aliasing rules predate the scope and rules
of the first ANSI SQL standard and the ISO SQL standard. In PROC SQL, a column
alias can be used in a WHERE clause, GROUP BY clause, HAVING clause, or ORDER
BY clause. In the ANSI SQL standard and ISO SQL standard, the value that is
associated with a column alias does not need to be available until the ORDER BY clause
is executed. As a result, there is no guarantee that an SQL processor can resolve a
column alias in time for it to be referenced in a WHERE clause, GROUP BY clause, or
HAVING clause. Because the ANSI SQL standard and ISO SQL standard require that a
column alias needs only to be available for reference when the ORDER BY clause is
executed, avoid writing code that refers to a column alias in a WHERE clause, GROUP
BY clause, or HAVING clause.

There are six parts in the conceptual order of execution of a SELECT statement from the
ANSI SQL standard or ISO SQL standard perspective. If all six parts exist, the sequence
is the following:

1. The FROM part is executed first.

2. The WHERE part is executed second.

3. The GROUP BY part is executed third.

4. The HAVING part is executed fourth.

5. The SELECT part is executed fifth.

6. The ORDER BY part is executed last.

The only required parts of an SQL query are the SELECT clause and FROM clause. The
other four parts might be optional, depending on what type of query you are performing.

Here is a high-level template of an SQL query. The number enclosed in parentheses to
the right of each part represents its position in the conceptual order of execution.

select <SELECT list> (5)
 from <FROM clause> (1)
 where <WHERE clause> (2)
 group by <GROUP BY clause> (3)

376 Appendix 2 • PROC SQL and the ANSI Standard

 having <HAVING clause> (4)
 order by <ORDER BY clause>; (6)

In the following code examples, the first alias in each SELECT statement is just a
rename of a table column. The second alias refers to a calculated expression. The first
and second SQL statements output the expected results in PROC SQL.

/* --Preferred SQL code example since a column alias
is not referenced in the WHERE clause*/
/*-- Portable to other SQL processors --*/
select qty as Quantity, cost, cost+100 as ListPrice
 from calc
 where qty > 5;

/*-- This code example will work in PROC SQL,
but might not work with other SQL processors --*/
select qty as Quantity, cost, cost+100 as ListPrice
 from calc
 where Quantity > 5;

An early extension to PROC SQL development was the CALCULATED keyword. The
CALCULATED keyword enables PROC SQL users to reference column aliases that are
associated with calculated expressions. The column alias referenced by the
CALCULATED keyword can be in the WHERE clause, GROUP BY clause, HAVING
clause, or ORDER BY clause. Using the CALCULATED keyword can be redundant if it
is used in the ORDER BY clause to refer to a column alias. That column alias will have
been already resolved by the time the ORDER BY clause is executed.

Here is a PROC SQL code example that uses the CALCULATED keyword to subset the
rows by the values that are associated with the second alias (ListPrice).

Example Code A2.1 CALCULATED Keyword and the PROC SQL Use of Column Aliases

/*-- PROC SQL use of the CALCULATED keyword --*/
select qty as Quantity, cost, cost+100 as ListPrice
 from calc
 where CALCULATED ListPrice > 1500;

The ISO SQL standard- and ANSI SQL standard-approved way of accomplishing this
task is as follows:

Example Code A2.2 CALCULATED Keyword and the PROC SQL Use of Column Aliases

/*-- PROC SQL use of the CALCULATED keyword --*/
select qty as Quantity, cost, cost+100 as ListPrice
 from calc
 where cost+100 > 1500;

The code in the previous example is portable.

PROC SQL and the ANSI Standard 377

378 Appendix 2 • PROC SQL and the ANSI Standard

Appendix 3

Source for SQL Examples

Overview . 379

EMPLOYEES . 379

HOUSES . 380

MATCH_11 . 380

PROCLIB.DELAY . 381

PROCLIB.HOUSES . 382

PROCLIB.MARCH . 383

PROCLIB.PAYLIST2 . 384

PROCLIB.PAYROLL . 384

PROCLIB.PAYROLL2 . 387

PROCLIB.SCHEDULE2 . 388

PROCLIB.STAFF . 388

PROCLIB.STAFF2 . 391

PROCLIB.SUPERV2 . 391

STORES . 392

SURVEY . 392

Overview
This section provides the DATA steps to create the tables used in the PROC SQL
examples in this guide.

EMPLOYEES
data Employees;
 input IdNum $4. +2 LName $11. FName $11. JobCode $3.
 +1 Salary 5. +1 Phone $12.;
 datalines;

379

1876 CHIN JACK TA1 42400 212/588-5634
1114 GREENWALD JANICE ME3 38000 212/588-1092
1556 PENNINGTON MICHAEL ME1 29860 718/383-5681
1354 PARKER MARY FA3 65800 914/455-2337
1130 WOOD DEBORAH PT2 36514 212/587-0013
;

HOUSES
data houses;
 input House $ x y;
 datalines;
house1 1 1
house2 3 3
house3 2 3
house4 7 7
;

MATCH_11

data match_11;
 input Pair Low Age Lwt Race Smoke Ptd Ht UI @@;
 select(race);
 when (1) do;
 race1=0;
 race2=0;
 end;
 when (2) do;
 race1=1;
 race2=0;
 end;
 when (3) do;
 race1=0;
 race2=1;
 end;
 end;
 datalines;
1 0 14 135 1 0 0 0 0 1 1 14 101 3 1 1 0 0
2 0 15 98 2 0 0 0 0 2 1 15 115 3 0 0 0 1
3 0 16 95 3 0 0 0 0 3 1 16 130 3 0 0 0 0
4 0 17 103 3 0 0 0 0 4 1 17 130 3 1 1 0 1
5 0 17 122 1 1 0 0 0 5 1 17 110 1 1 0 0 0
6 0 17 113 2 0 0 0 0 6 1 17 120 1 1 0 0 0
7 0 17 113 2 0 0 0 0 7 1 17 120 2 0 0 0 0
8 0 17 119 3 0 0 0 0 8 1 17 142 2 0 0 1 0
9 0 18 100 1 1 0 0 0 9 1 18 148 3 0 0 0 0
10 0 18 90 1 1 0 0 1 10 1 18 110 2 1 1 0 0
11 0 19 150 3 0 0 0 0 11 1 19 91 1 1 1 0 1
12 0 19 115 3 0 0 0 0 12 1 19 102 1 0 0 0 0
13 0 19 235 1 1 0 1 0 13 1 19 112 1 1 0 0 1

380 Appendix 3 • Source for SQL Examples

14 0 20 120 3 0 0 0 1 14 1 20 150 1 1 0 0 0
15 0 20 103 3 0 0 0 0 15 1 20 125 3 0 0 0 1
16 0 20 169 3 0 1 0 1 16 1 20 120 2 1 0 0 0
17 0 20 141 1 0 1 0 1 17 1 20 80 3 1 0 0 1
18 0 20 121 2 1 0 0 0 18 1 20 109 3 0 0 0 0
19 0 20 127 3 0 0 0 0 19 1 20 121 1 1 1 0 1
20 0 20 120 3 0 0 0 0 20 1 20 122 2 1 0 0 0
21 0 20 158 1 0 0 0 0 21 1 20 105 3 0 0 0 0
22 0 21 108 1 1 0 0 1 22 1 21 165 1 1 0 1 0
23 0 21 124 3 0 0 0 0 23 1 21 200 2 0 0 0 0
24 0 21 185 2 1 0 0 0 24 1 21 103 3 0 0 0 0
25 0 21 160 1 0 0 0 0 25 1 21 100 3 0 1 0 0
26 0 21 115 1 0 0 0 0 26 1 21 130 1 1 0 1 0
27 0 22 95 3 0 0 1 0 27 1 22 130 1 1 0 0 0
28 0 22 158 2 0 1 0 0 28 1 22 130 1 1 1 0 1
29 0 23 130 2 0 0 0 0 29 1 23 97 3 0 0 0 1
30 0 23 128 3 0 0 0 0 30 1 23 187 2 1 0 0 0
31 0 23 119 3 0 0 0 0 31 1 23 120 3 0 0 0 0
32 0 23 115 3 1 0 0 0 32 1 23 110 1 1 1 0 0
33 0 23 190 1 0 0 0 0 33 1 23 94 3 1 0 0 0
34 0 24 90 1 1 1 0 0 34 1 24 128 2 0 1 0 0
35 0 24 115 1 0 0 0 0 35 1 24 132 3 0 0 1 0
36 0 24 110 3 0 0 0 0 36 1 24 155 1 1 1 0 0
37 0 24 115 3 0 0 0 0 37 1 24 138 1 0 0 0 0
38 0 24 110 3 0 1 0 0 38 1 24 105 2 1 0 0 0
39 0 25 118 1 1 0 0 0 39 1 25 105 3 0 1 1 0
40 0 25 120 3 0 0 0 1 40 1 25 85 3 0 0 0 1
41 0 25 155 1 0 0 0 0 41 1 25 115 3 0 0 0 0
42 0 25 125 2 0 0 0 0 42 1 25 92 1 1 0 0 0
43 0 25 140 1 0 0 0 0 43 1 25 89 3 0 1 0 0
44 0 25 241 2 0 0 1 0 44 1 25 105 3 0 1 0 0
45 0 26 113 1 1 0 0 0 45 1 26 117 1 1 1 0 0
46 0 26 168 2 1 0 0 0 46 1 26 96 3 0 0 0 0
47 0 26 133 3 1 1 0 0 47 1 26 154 3 0 1 1 0
48 0 26 160 3 0 0 0 0 48 1 26 190 1 1 0 0 0
49 0 27 124 1 1 0 0 0 49 1 27 130 2 0 0 0 1
50 0 28 120 3 0 0 0 0 50 1 28 120 3 1 1 0 1
51 0 28 130 3 0 0 0 0 51 1 28 95 1 1 0 0 0
52 0 29 135 1 0 0 0 0 52 1 29 130 1 0 0 0 1
53 0 30 95 1 1 0 0 0 53 1 30 142 1 1 1 0 0
54 0 31 215 1 1 0 0 0 54 1 31 102 1 1 1 0 0
55 0 32 121 3 0 0 0 0 55 1 32 105 1 1 0 0 0
56 0 34 170 1 0 1 0 0 56 1 34 187 2 1 0 1 0
;

PROCLIB.DELAY
data proclib.delay;
 input flight $3. +5 date date7. +2 orig $3. +3 dest $3. +3
 delaycat $15. +2 destype $15. +8 delay;
 informat date date7.;
 format date date7.;
 datalines;

PROCLIB.DELAY 381

114 01MAR08 LGA LAX 1-10 Minutes Domestic 8
202 01MAR08 LGA ORD No Delay Domestic -5
219 01MAR08 LGA LON 11+ Minutes International 18
622 01MAR08 LGA FRA No Delay International -5
132 01MAR08 LGA YYZ 11+ Minutes International 14
271 01MAR08 LGA PAR 1-10 Minutes International 5
302 01MAR08 LGA WAS No Delay Domestic -2
114 02MAR08 LGA LAX No Delay Domestic 0
202 02MAR08 LGA ORD 1-10 Minutes Domestic 5
219 02MAR08 LGA LON 11+ Minutes International 18
622 02MAR08 LGA FRA No Delay International 0
132 02MAR08 LGA YYZ 1-10 Minutes International 5
271 02MAR08 LGA PAR 1-10 Minutes International 4
302 02MAR08 LGA WAS No Delay Domestic 0
114 03MAR08 LGA LAX No Delay Domestic -1
202 03MAR08 LGA ORD No Delay Domestic -1
219 03MAR08 LGA LON 1-10 Minutes International 4
622 03MAR08 LGA FRA No Delay International -2
132 03MAR08 LGA YYZ 1-10 Minutes International 6
271 03MAR08 LGA PAR 1-10 Minutes International 2
302 03MAR08 LGA WAS 1-10 Minutes Domestic 5
114 04MAR08 LGA LAX 11+ Minutes Domestic 15
202 04MAR08 LGA ORD No Delay Domestic -5
219 04MAR08 LGA LON 1-10 Minutes International 3
622 04MAR08 LGA FRA 11+ Minutes International 30
132 04MAR08 LGA YYZ No Delay International -5
271 04MAR08 LGA PAR 1-10 Minutes International 5
302 04MAR08 LGA WAS 1-10 Minutes Domestic 7
114 05MAR08 LGA LAX No Delay Domestic -2
202 05MAR08 LGA ORD 1-10 Minutes Domestic 2
219 05MAR08 LGA LON 1-10 Minutes International 3
622 05MAR08 LGA FRA No Delay International -6
132 05MAR08 LGA YYZ 1-10 Minutes International 3
271 05MAR08 LGA PAR 1-10 Minutes International 5
114 06MAR08 LGA LAX No Delay Domestic -1
202 06MAR08 LGA ORD No Delay Domestic -3
219 06MAR08 LGA LON 11+ Minutes International 27
132 06MAR08 LGA YYZ 1-10 Minutes International 7
302 06MAR08 LGA WAS 1-10 Minutes Domestic 1
114 07MAR08 LGA LAX No Delay Domestic -1
202 07MAR08 LGA ORD No Delay Domestic -2
219 07MAR08 LGA LON 11+ Minutes International 15
622 07MAR08 LGA FRA 11+ Minutes International 21
132 07MAR08 LGA YYZ No Delay International -2
271 07MAR08 LGA PAR 1-10 Minutes International 4
302 07MAR08 LGA WAS No Delay Domestic 0
;

PROCLIB.HOUSES
The contents of this data set are different from the “HOUSES” on page 380 data set.
This data set is intended only for the “Example: INTO Clause” on page 294.

382 Appendix 3 • Source for SQL Examples

libname proclib 'SAS-library';

data proclib.houses;
input Style $ 1-8 SqFeet 15-18;
datalines;
CONDO 900
CONDO 1000
RANCH 1200
RANCH 1400
SPLIT 1600
SPLIT 1800
TWOSTORY 2100
TWOSTORY 3000
TWOSTORY 1940
TWOSTORY 1860
;

PROCLIB.MARCH

data proclib.march;
 input flight $3. +5 date date7. +3 depart time5. +2 orig $3.
 +3 dest $3. +7 miles +6 boarded +6 capacity;
 format date date7. depart time5.;
 informat date date7. depart time5.;
 datalines;
114 01MAR08 7:10 LGA LAX 2475 172 210
202 01MAR08 10:43 LGA ORD 740 151 210
219 01MAR08 9:31 LGA LON 3442 198 250
622 01MAR08 12:19 LGA FRA 3857 207 250
132 01MAR08 15:35 LGA YYZ 366 115 178
271 01MAR08 13:17 LGA PAR 3635 138 250
302 01MAR08 20:22 LGA WAS 229 105 180
114 02MAR08 7:10 LGA LAX 2475 119 210
202 02MAR08 10:43 LGA ORD 740 120 210
219 02MAR08 9:31 LGA LON 3442 147 250
622 02MAR08 12:19 LGA FRA 3857 176 250
132 02MAR08 15:35 LGA YYZ 366 106 178
302 02MAR08 20:22 LGA WAS 229 78 180
271 02MAR08 13:17 LGA PAR 3635 104 250
114 03MAR08 7:10 LGA LAX 2475 197 210
202 03MAR08 10:43 LGA ORD 740 118 210
219 03MAR08 9:31 LGA LON 3442 197 250
622 03MAR08 12:19 LGA FRA 3857 180 250
132 03MAR08 15:35 LGA YYZ 366 75 178
271 03MAR08 13:17 LGA PAR 3635 147 250
302 03MAR08 20:22 LGA WAS 229 123 180
114 04MAR08 7:10 LGA LAX 2475 178 210
202 04MAR08 10:43 LGA ORD 740 148 210
219 04MAR08 9:31 LGA LON 3442 232 250
622 04MAR08 12:19 LGA FRA 3857 137 250
132 04MAR08 15:35 LGA YYZ 366 117 178
271 04MAR08 13:17 LGA PAR 3635 146 250

PROCLIB.MARCH 383

302 04MAR08 20:22 LGA WAS 229 115 180
114 05MAR08 7:10 LGA LAX 2475 117 210
202 05MAR08 10:43 LGA ORD 740 104 210
219 05MAR08 9:31 LGA LON 3442 160 250
622 05MAR08 12:19 LGA FRA 3857 185 250
132 05MAR08 15:35 LGA YYZ 366 157 178
271 05MAR08 13:17 LGA PAR 3635 177 250
114 06MAR08 7:10 LGA LAX 2475 128 210
202 06MAR08 10:43 LGA ORD 740 115 210
219 06MAR08 9:31 LGA LON 3442 163 250
132 06MAR08 15:35 LGA YYZ 366 150 178
302 06MAR08 20:22 LGA WAS 229 66 180
114 07MAR08 7:10 LGA LAX 2475 160 210
202 07MAR08 10:43 LGA ORD 740 175 210
219 07MAR08 9:31 LGA LON 3442 241 250
622 07MAR08 12:19 LGA FRA 3857 210 250
132 07MAR08 15:35 LGA YYZ 366 164 178
271 07MAR08 13:17 LGA PAR 3635 155 250
302 07MAR08 20:22 LGA WAS 229 135 180
;

PROCLIB.PAYLIST2

proc sql;
 create table proclib.paylist2
 (IdNum char(4),
 Gender char(1),
 Jobcode char(3),
 Salary num,
 Birth num informat=date7.
 format=date7.,
 Hired num informat=date7.
 format=date7.);

insert into proclib.paylist2
values('1919','M','TA2',34376,'12SEP66'd,'04JUN87'd)
values('1653','F','ME2',31896,'15OCT64'd,'09AUG92'd)
values('1350','F','FA3',36886,'31AUG55'd,'29JUL91'd)
values('1401','M','TA3',38822,'13DEC55'd,'17NOV93'd)
values('1499','M','ME1',23025,'26APR74'd,'07JUN92'd);

title 'PROCLIB.PAYLIST2 Table';
select * from proclib.paylist2;

PROCLIB.PAYROLL
This data set is updated in “Example 3: Updating Data in a PROC SQL Table” on page
249. Its updated data is used in subsequent examples.

384 Appendix 3 • Source for SQL Examples

data proclib.payroll;
 input IdNumber $4. +3 Gender $1. +4 Jobcode $3. +9 Salary 5.
 +2 Birth date7. +2 Hired date7.;
 informat birth date7. hired date7.;
 format birth date7. hired date7.;
 datalines;
1919 M TA2 34376 12SEP60 04JUN87
1653 F ME2 35108 15OCT64 09AUG90
1400 M ME1 29769 05NOV67 16OCT90
1350 F FA3 32886 31AUG65 29JUL90
1401 M TA3 38822 13DEC50 17NOV85
1499 M ME3 43025 26APR54 07JUN80
1101 M SCP 18723 06JUN62 01OCT90
1333 M PT2 88606 30MAR61 10FEB81
1402 M TA2 32615 17JAN63 02DEC90
1479 F TA3 38785 22DEC68 05OCT89
1403 M ME1 28072 28JAN69 21DEC91
1739 M PT1 66517 25DEC64 27JAN91
1658 M SCP 17943 08APR67 29FEB92
1428 F PT1 68767 04APR60 16NOV91
1782 M ME2 35345 04DEC70 22FEB92
1244 M ME2 36925 31AUG63 17JAN88
1383 M BCK 25823 25JAN68 20OCT92
1574 M FA2 28572 27APR60 20DEC92
1789 M SCP 18326 25JAN57 11APR78
1404 M PT2 91376 24FEB53 01JAN80
1437 F FA3 33104 20SEP60 31AUG84
1639 F TA3 40260 26JUN57 28JAN84
1269 M NA1 41690 03MAY72 28NOV92
1065 M ME2 35090 26JAN44 07JAN87
1876 M TA3 39675 20MAY58 27APR85
1037 F TA1 28558 10APR64 13SEP92
1129 F ME2 34929 08DEC61 17AUG91
1988 M FA3 32217 30NOV59 18SEP84
1405 M SCP 18056 05MAR66 26JAN92
1430 F TA2 32925 28FEB62 27APR87
1983 F FA3 33419 28FEB62 27APR87
1134 F TA2 33462 05MAR69 21DEC88
1118 M PT3 111379 16JAN44 18DEC80
1438 F TA3 39223 15MAR65 18NOV87
1125 F FA2 28888 08NOV68 11DEC87
1475 F FA2 27787 15DEC61 13JUL90
1117 M TA3 39771 05JUN63 13AUG92
1935 F NA2 51081 28MAR54 16OCT81
1124 F FA1 23177 10JUL58 01OCT90
1422 F FA1 22454 04JUN64 06APR91
1616 F TA2 34137 01MAR70 04JUN93
1406 M ME2 35185 08MAR61 17FEB87
1120 M ME1 28619 11SEP72 07OCT93
1094 M FA1 22268 02APR70 17APR91
1389 M BCK 25028 15JUL59 18AUG90
1905 M PT1 65111 16APR72 29MAY92
1407 M PT1 68096 23MAR69 18MAR90
1114 F TA2 32928 18SEP69 27JUN87
1410 M PT2 84685 03MAY67 07NOV86

PROCLIB.PAYROLL 385

1439 F PT1 70736 06MAR64 10SEP90
1409 M ME3 41551 19APR50 22OCT81
1408 M TA2 34138 29MAR60 14OCT87
1121 M ME1 29112 26SEP71 07DEC91
1991 F TA1 27645 07MAY72 12DEC92
1102 M TA2 34542 01OCT59 15APR91
1356 M ME2 36869 26SEP57 22FEB83
1545 M PT1 66130 12AUG59 29MAY90
1292 F ME2 36691 28OCT64 02JUL89
1440 F ME2 35757 27SEP62 09APR91
1368 M FA2 27808 11JUN61 03NOV84
1369 M TA2 33705 28DEC61 13MAR87
1411 M FA2 27265 27MAY61 01DEC89
1113 F FA1 22367 15JAN68 17OCT91
1704 M BCK 25465 30AUG66 28JUN87
1900 M ME2 35105 25MAY62 27OCT87
1126 F TA3 40899 28MAY63 21NOV80
1677 M BCK 26007 05NOV63 27MAR89
1441 F FA2 27158 19NOV69 23MAR91
1421 M TA2 33155 08JAN59 28FEB90
1119 M TA1 26924 20JUN62 06SEP88
1834 M BCK 26896 08FEB72 02JUL92
1777 M PT3 109630 23SEP51 21JUN81
1663 M BCK 26452 11JAN67 11AUG91
1106 M PT2 89632 06NOV57 16AUG84
1103 F FA1 23738 16FEB68 23JUL92
1477 M FA2 28566 21MAR64 07MAR88
1476 F TA2 34803 30MAY66 17MAR87
1379 M ME3 42264 08AUG61 10JUN84
1104 M SCP 17946 25APR63 10JUN91
1009 M TA1 28880 02MAR59 26MAR92
1412 M ME1 27799 18JUN56 05DEC91
1115 F FA3 32699 22AUG60 29FEB80
1128 F TA2 32777 23MAY65 20OCT90
1442 F PT2 84536 05SEP66 12APR88
1417 M NA2 52270 27JUN64 07MAR89
1478 M PT2 84203 09AUG59 24OCT90
1673 M BCK 25477 27FEB70 15JUL91
1839 F NA1 43433 29NOV70 03JUL93
1347 M TA3 40079 21SEP67 06SEP84
1423 F ME2 35773 14MAY68 19AUG90
1200 F ME1 27816 10JAN71 14AUG92
1970 F FA1 22615 25SEP64 12MAR91
1521 M ME3 41526 12APR63 13JUL88
1354 F SCP 18335 29MAY71 16JUN92
1424 F FA2 28978 04AUG69 11DEC89
1132 F FA1 22413 30MAY72 22OCT93
1845 M BCK 25996 20NOV59 22MAR80
1556 M PT1 71349 22JUN64 11DEC91
1413 M FA2 27435 16SEP65 02JAN90
1123 F TA1 28407 31OCT72 05DEC92
1907 M TA2 33329 15NOV60 06JUL87
1436 F TA2 34475 11JUN64 12MAR87
1385 M ME3 43900 16JAN62 01APR86
1432 F ME2 35327 03NOV61 10FEB85
1111 M NA1 40586 14JUL73 31OCT92

386 Appendix 3 • Source for SQL Examples

1116 F FA1 22862 28SEP69 21MAR91
1352 M NA2 53798 02DEC60 16OCT86
1555 F FA2 27499 16MAR68 04JUL92
1038 F TA1 26533 09NOV69 23NOV91
1420 M ME3 43071 19FEB65 22JUL87
1561 M TA2 34514 30NOV63 07OCT87
1434 F FA2 28622 11JUL62 28OCT90
1414 M FA1 23644 24MAR72 12APR92
1112 M TA1 26905 29NOV64 07DEC92
1390 M FA2 27761 19FEB65 23JUN91
1332 M NA1 42178 17SEP70 04JUN91
1890 M PT2 91908 20JUL51 25NOV79
1429 F TA1 27939 28FEB60 07AUG92
1107 M PT2 89977 09JUN54 10FEB79
1908 F TA2 32995 10DEC69 23APR90
1830 F PT2 84471 27MAY57 29JAN83
1882 M ME3 41538 10JUL57 21NOV78
1050 M ME2 35167 14JUL63 24AUG86
1425 F FA1 23979 28DEC71 28FEB93
1928 M PT2 89858 16SEP54 13JUL90
1480 F TA3 39583 03SEP57 25MAR81
1100 M BCK 25004 01DEC60 07MAY88
1995 F ME1 28810 24AUG73 19SEP93
1135 F FA2 27321 20SEP60 31MAR90
1415 M FA2 28278 09MAR58 12FEB88
1076 M PT1 66558 14OCT55 03OCT91
1426 F TA2 32991 05DEC66 25JUN90
1564 F SCP 18833 12APR62 01JUL92
1221 F FA2 27896 22SEP67 04OCT91
1133 M TA1 27701 13JUL66 12FEB92
1435 F TA3 38808 12MAY59 08FEB80
1418 M ME1 28005 29MAR57 06JAN92
1017 M TA3 40858 28DEC57 16OCT81
1443 F NA1 42274 17NOV68 29AUG91
1131 F TA2 32575 26DEC71 19APR91
1427 F TA2 34046 31OCT70 30JAN90
1036 F TA3 39392 19MAY65 23OCT84
1130 F FA1 23916 16MAY71 05JUN92
1127 F TA2 33011 09NOV64 07DEC86
1433 F FA3 32982 08JUL66 17JAN87
1431 F FA3 33230 09JUN64 05APR88
1122 F FA2 27956 01MAY63 27NOV88
1105 M ME2 34805 01MAR62 13AUG90
;

PROCLIB.PAYROLL2

data proclib.payroll2;
 input idnum $4. +3 gender $1. +4 jobcode $3. +9 salary 5.
 +2 birth date7. +2 hired date7.;
 informat birth date7. hired date7.;
 format birth date7. hired date7.;

PROCLIB.PAYROLL2 387

 datalines;
1639 F TA3 42260 26JUN57 28JAN84
1065 M ME3 38090 26JAN44 07JAN87
1561 M TA3 36514 30NOV63 07OCT87
1221 F FA3 29896 22SEP67 04OCT91
1447 F FA1 22123 07AUG72 29OCT92
1998 M SCP 23100 10SEP70 02NOV92
1036 F TA3 42465 19MAY65 23OCT84
1106 M PT3 94039 06NOV57 16AUG84
1129 F ME3 36758 08DEC61 17AUG91
1350 F FA3 36098 31AUG65 29JUL90
1369 M TA3 36598 28DEC61 13MAR87
1076 M PT1 69742 14OCT55 03OCT91
;

PROCLIB.SCHEDULE2
data proclib.schedule2;
 input flight $3. +5 date date7. +2 dest $3. +3 idnum $4.;
 format date date7.;
 informat date date7.;
 datalines;
132 01MAR94 BOS 1118
132 01MAR94 BOS 1402
219 02MAR94 PAR 1616
219 02MAR94 PAR 1478
622 03MAR94 LON 1430
622 03MAR94 LON 1882
271 04MAR94 NYC 1430
271 04MAR94 NYC 1118
579 05MAR94 RDU 1126
579 05MAR94 RDU 1106
;

PROCLIB.STAFF

data proclib.staff;
 input idnum $4. +3 lname $15. +2 fname $15. +2 city $15. +2
 state $2. +5 hphone $12.;
 datalines;
1919 ADAMS GERALD STAMFORD CT 203/781-1255
1653 ALIBRANDI MARIA BRIDGEPORT CT 203/675-7715
1400 ALHERTANI ABDULLAH NEW YORK NY 212/586-0808
1350 ALVAREZ MERCEDES NEW YORK NY 718/383-1549
1401 ALVAREZ CARLOS PATERSON NJ 201/732-8787
1499 BAREFOOT JOSEPH PRINCETON NJ 201/812-5665
1101 BAUCOM WALTER NEW YORK NY 212/586-8060
1333 BANADYGA JUSTIN STAMFORD CT 203/781-1777
1402 BLALOCK RALPH NEW YORK NY 718/384-2849
1479 BALLETTI MARIE NEW YORK NY 718/384-8816

388 Appendix 3 • Source for SQL Examples

1403 BOWDEN EARL BRIDGEPORT CT 203/675-3434
1739 BRANCACCIO JOSEPH NEW YORK NY 212/587-1247
1658 BREUHAUS JEREMY NEW YORK NY 212/587-3622
1428 BRADY CHRISTINE STAMFORD CT 203/781-1212
1782 BREWCZAK JAKOB STAMFORD CT 203/781-0019
1244 BUCCI ANTHONY NEW YORK NY 718/383-3334
1383 BURNETTE THOMAS NEW YORK NY 718/384-3569
1574 CAHILL MARSHALL NEW YORK NY 718/383-2338
1789 CARAWAY DAVIS NEW YORK NY 212/587-9000
1404 COHEN LEE NEW YORK NY 718/384-2946
1437 CARTER DOROTHY BRIDGEPORT CT 203/675-4117
1639 CARTER-COHEN KAREN STAMFORD CT 203/781-8839
1269 CASTON FRANKLIN STAMFORD CT 203/781-3335
1065 COPAS FREDERICO NEW YORK NY 718/384-5618
1876 CHIN JACK NEW YORK NY 212/588-5634
1037 CHOW JANE STAMFORD CT 203/781-8868
1129 COUNIHAN BRENDA NEW YORK NY 718/383-2313
1988 COOPER ANTHONY NEW YORK NY 212/587-1228
1405 DACKO JASON PATERSON NJ 201/732-2323
1430 DABROWSKI SANDRA BRIDGEPORT CT 203/675-1647
1983 DEAN SHARON NEW YORK NY 718/384-1647
1134 DELGADO MARIA STAMFORD CT 203/781-1528
1118 DENNIS ROGER NEW YORK NY 718/383-1122
1438 DABBOUSSI KAMILLA STAMFORD CT 203/781-2229
1125 DUNLAP DONNA NEW YORK NY 718/383-2094
1475 ELGES MARGARETE NEW YORK NY 718/383-2828
1117 EDGERTON JOSHUA NEW YORK NY 212/588-1239
1935 FERNANDEZ KATRINA BRIDGEPORT CT 203/675-2962
1124 FIELDS DIANA WHITE PLAINS NY 914/455-2998
1422 FUJIHARA KYOKO PRINCETON NJ 201/812-0902
1616 FUENTAS CARLA NEW YORK NY 718/384-3329
1406 FOSTER GERALD BRIDGEPORT CT 203/675-6363
1120 GARCIA JACK NEW YORK NY 718/384-4930
1094 GOMEZ ALAN BRIDGEPORT CT 203/675-7181
1389 GOLDSTEIN LEVI NEW YORK NY 718/384-9326
1905 GRAHAM ALVIN NEW YORK NY 212/586-8815
1407 GREGORSKI DANIEL MT. VERNON NY 914/468-1616
1114 GREENWALD JANICE NEW YORK NY 212/588-1092
1410 HARRIS CHARLES STAMFORD CT 203/781-0937
1439 HASENHAUER CHRISTINA BRIDGEPORT CT 203/675-4987
1409 HAVELKA RAYMOND STAMFORD CT 203/781-9697
1408 HENDERSON WILLIAM PRINCETON NJ 201/812-4789
1121 HERNANDEZ ROBERTO NEW YORK NY 718/384-3313
1991 HOWARD GRETCHEN BRIDGEPORT CT 203/675-0007
1102 HERMANN JOACHIM WHITE PLAINS NY 914/455-0976
1356 HOWARD MICHAEL NEW YORK NY 212/586-8411
1545 HERRERO CLYDE STAMFORD CT 203/781-1119
1292 HUNTER HELEN BRIDGEPORT CT 203/675-4830
1440 JACKSON LAURA STAMFORD CT 203/781-0088
1368 JEPSEN RONALD STAMFORD CT 203/781-8413
1369 JONSON ANTHONY NEW YORK NY 212/587-5385
1411 JOHNSEN JACK PATERSON NJ 201/732-3678
1113 JOHNSON LESLIE NEW YORK NY 718/383-3003
1704 JONES NATHAN NEW YORK NY 718/384-0049
1900 KING WILLIAM NEW YORK NY 718/383-3698
1126 KIMANI ANNE NEW YORK NY 212/586-1229

PROCLIB.STAFF 389

1677 KRAMER JACKSON BRIDGEPORT CT 203/675-7432
1441 LAWRENCE KATHY PRINCETON NJ 201/812-3337
1421 LEE RUSSELL MT. VERNON NY 914/468-9143
1119 LI JEFF NEW YORK NY 212/586-2344
1834 LEBLANC RUSSELL NEW YORK NY 718/384-0040
1777 LUFKIN ROY NEW YORK NY 718/383-4413
1663 MARKS JOHN NEW YORK NY 212/587-7742
1106 MARSHBURN JASPER STAMFORD CT 203/781-1457
1103 MCDANIEL RONDA NEW YORK NY 212/586-0013
1477 MEYERS PRESTON BRIDGEPORT CT 203/675-8125
1476 MONROE JOYCE STAMFORD CT 203/781-2837
1379 MORGAN ALFRED STAMFORD CT 203/781-2216
1104 MORGAN CHRISTOPHER NEW YORK NY 718/383-9740
1009 MORGAN GEORGE NEW YORK NY 212/586-7753
1412 MURPHEY JOHN PRINCETON NJ 201/812-4414
1115 MURPHY ALICE NEW YORK NY 718/384-1982
1128 NELSON FELICIA BRIDGEPORT CT 203/675-1166
1442 NEWKIRK SANDRA PRINCETON NJ 201/812-3331
1417 NEWKIRK WILLIAM PATERSON NJ 201/732-6611
1478 NEWTON JAMES NEW YORK NY 212/587-5549
1673 NICHOLLS HENRY STAMFORD CT 203/781-7770
1839 NORRIS DIANE NEW YORK NY 718/384-1767
1347 O'NEAL BRYAN NEW YORK NY 718/384-0230
1423 OSWALD LESLIE MT. VERNON NY 914/468-9171
1200 OVERMAN MICHELLE STAMFORD CT 203/781-1835
1970 PARKER ANNE NEW YORK NY 718/383-3895
1521 PARKER JAY NEW YORK NY 212/587-7603
1354 PARKER MARY WHITE PLAINS NY 914/455-2337
1424 PATTERSON RENEE NEW YORK NY 212/587-8991
1132 PEARCE CAROL NEW YORK NY 718/384-1986
1845 PEARSON JAMES NEW YORK NY 718/384-2311
1556 PENNINGTON MICHAEL NEW YORK NY 718/383-5681
1413 PETERS RANDALL PRINCETON NJ 201/812-2478
1123 PETERSON SUZANNE NEW YORK NY 718/383-0077
1907 PHELPS WILLIAM STAMFORD CT 203/781-1118
1436 PORTER SUSAN NEW YORK NY 718/383-5777
1385 RAYNOR MILTON BRIDGEPORT CT 203/675-2846
1432 REED MARILYN MT. VERNON NY 914/468-5454
1111 RHODES JEREMY PRINCETON NJ 201/812-1837
1116 RICHARDS CASEY NEW YORK NY 212/587-1224
1352 RIVERS SIMON NEW YORK NY 718/383-3345
1555 RODRIGUEZ JULIA BRIDGEPORT CT 203/675-2401
1038 RODRIGUEZ MARIA BRIDGEPORT CT 203/675-2048
1420 ROUSE JEREMY PATERSON NJ 201/732-9834
1561 SANDERS RAYMOND NEW YORK NY 212/588-6615
1434 SANDERSON EDITH STAMFORD CT 203/781-1333
1414 SANDERSON NATHAN BRIDGEPORT CT 203/675-1715
1112 SANYERS RANDY NEW YORK NY 718/384-4895
1390 SMART JONATHAN NEW YORK NY 718/383-1141
1332 STEPHENSON ADAM BRIDGEPORT CT 203/675-1497
1890 STEPHENSON ROBERT NEW YORK NY 718/384-9874
1429 THOMPSON ALICE STAMFORD CT 203/781-3857
1107 THOMPSON WAYNE NEW YORK NY 718/384-3785
1908 TRENTON MELISSA NEW YORK NY 212/586-6262
1830 TRIPP KATHY BRIDGEPORT CT 203/675-2479
1882 TUCKER ALAN NEW YORK NY 718/384-0216

390 Appendix 3 • Source for SQL Examples

1050 TUTTLE THOMAS WHITE PLAINS NY 914/455-2119
1425 UNDERWOOD JENNY STAMFORD CT 203/781-0978
1928 UPCHURCH LARRY WHITE PLAINS NY 914/455-5009
1480 UPDIKE THERESA NEW YORK NY 212/587-8729
1100 VANDEUSEN RICHARD NEW YORK NY 212/586-2531
1995 VARNER ELIZABETH NEW YORK NY 718/384-7113
1135 VEGA ANNA NEW YORK NY 718/384-5913
1415 VEGA FRANKLIN NEW YORK NY 718/384-2823
1076 VENTER RANDALL NEW YORK NY 718/383-2321
1426 VICK THERESA PRINCETON NJ 201/812-2424
1564 WALTERS ANNE NEW YORK NY 212/587-3257
1221 WALTERS DIANE NEW YORK NY 718/384-1918
1133 WANG CHIN NEW YORK NY 212/587-1956
1435 WARD ELAINE NEW YORK NY 718/383-4987
1418 WATSON BERNARD NEW YORK NY 718/383-1298
1017 WELCH DARIUS NEW YORK NY 212/586-5535
1443 WELLS AGNES STAMFORD CT 203/781-5546
1131 WELLS NADINE NEW YORK NY 718/383-1045
1427 WHALEY CAROLYN MT. VERNON NY 914/468-4528
1036 WONG LESLIE NEW YORK NY 212/587-2570
1130 WOOD DEBORAH NEW YORK NY 212/587-0013
1127 WOOD SANDRA NEW YORK NY 212/587-2881
1433 YANCEY ROBIN PRINCETON NJ 201/812-1874
1431 YOUNG DEBORAH STAMFORD CT 203/781-2987
1122 YOUNG JOANN NEW YORK NY 718/384-2021
1105 YOUNG LAWRENCE NEW YORK NY 718/384-0008
;

PROCLIB.STAFF2
data proclib.staff2;
input IdNum $4. @7 Lname $12. @20 Fname $8. @30 City $10.
 @42 State $2. @50 Hphone $12.;
 datalines;
1106 MARSHBURN JASPER STAMFORD CT 203/781-1457
1430 DABROWSKI SANDRA BRIDGEPORT CT 203/675-1647
1118 DENNIS ROGER NEW YORK NY 718/383-1122
1126 KIMANI ANNE NEW YORK NY 212/586-1229
1402 BLALOCK RALPH NEW YORK NY 718/384-2849
1882 TUCKER ALAN NEW YORK NY 718/384-0216
1479 BALLETTI MARIE NEW YORK NY 718/384-8816
1420 ROUSE JEREMY PATERSON NJ 201/732-9834
1403 BOWDEN EARL BRIDGEPORT CT 203/675-3434
1616 FUENTAS CARLA NEW YORK NY 718/384-3329
;

PROCLIB.SUPERV2
data proclib.superv2;
 input supid $4. +8 state $2. +5 jobcat $2.;
 label supid='Supervisor Id' jobcat='Job Category';

PROCLIB.SUPERV2 391

 datalines;
1417 NJ NA
1352 NY NA
1106 CT PT
1442 NJ PT
1118 NY PT
1405 NJ SC
1564 NY SC
1639 CT TA
1126 NY TA
1882 NY ME
;

STORES
data stores;
 input Store $ x y;
 datalines;
store1 5 1
store2 5 3
store3 3 5
store4 7 5
;

SURVEY
data survey;
 input id $ diet $ exer $ hours xwk educ;
 datalines;
1001 yes yes 1 3 1
1002 no yes 1 4 2
1003 no no . . .n
1004 yes yes 2 3 .x
1005 no yes 2 3 .x
1006 yes yes 2 4 .x
1007 no yes .5 3 .
1008 no no . . .
;

392 Appendix 3 • Source for SQL Examples

Glossary

calculated column
in a query, a column that does not exist in any of the tables that are being queried,
but which is created as a result of a column expression.

Cartesian product
a type of join that matches each row from each joined table to each row from all
other joined tables.

column
a vertical component of a table. Each column has a unique name, contains data of a
specific type, and has particular attributes. A column is analogous to a variable in
SAS terminology.

column alias
a temporary, alternate name for a column. Aliases are optionally specified in the
SQL procedure's SELECT clause to name or rename columns. An alias is one word.

column expression
a set of operators and operands that, when evaluated, result in a single data value.
The resulting data value can be either a character value or a numeric value.

composite index
an index that locates observations in a SAS data set by examining the values of two
or more key variables.

condition
in the SQL procedure, the part of the WHERE clause that specifies which rows are to
be retrieved.

cross join
a type of join that returns the product of joined tables. A cross join is functionally the
same as a Cartesian product.

data set
See SAS data set.

data view
See SAS data view.

DISTINCT
a keyword that causes the SQL procedure to remove duplicate rows from the output.

393

equijoin
a kind of join in the SQL procedure. For example, when two tables are joined in an
equijoin, the value of a column in the first table must equal the value of the column
in the second table in the SQL expression.

format
See SAS format.

group
a set of rows or observations that have the same value or values for one or more
common columns or variables.

in-line view
a query-expression that is nested in the SQL procedure's FROM clause. An in-line
view produces a table internally that the outer query uses to select data. You save a
programming step when you use an in-line view, because instead of creating a view
and then referring to it in another query, you can specify the view in-line in the
FROM clause. An in-line view can be referenced only in the query (or statement) in
which it is defined.

index
a component of a SAS data set that enables SAS to access observations in the SAS
data set quickly and efficiently. The purpose of SAS indexes is to optimize WHERE-
clause processing and to facilitate BY-group processing.

inner join
a join between two tables that returns all of the rows in one table that have one or
more matching rows in the other table.

integrity constraints
a set of data validation rules that you can specify in order to restrict the data values
that can be stored for a variable in a SAS data file. Integrity constraints help you
preserve the validity and consistency of your data.

join
an operation that combines data from two or more tables. A join is typically created
by means of SQL (Structured Query Language) code or a user interface.

join criteria
the set of parameters that determine how tables are to be joined. Join criteria are
usually specified in a WHERE expression or in an SQL ON clause.

missing value
a type of value for a variable that contains no data for a particular row or column. By
default, SAS writes a missing numeric value as a single period and a missing
character value as a blank space.

natural join
a type of join that returns selected rows from tables in which one or more columns in
each table have the same name and the same data type and contain the same value.

outer join
a join between two tables that returns all of the rows in one table, as well as part or
all of the rows in the other table. A left or right outer join returns all of the rows in
one table (the table on the left or right side of the SQL statement, respectively), as

394 Glossary

well as the matching rows in the other table. A full outer join returns all of the rows
in both of the tables.

pass-through facility
See SQL pass-through facility.

PROC SQL view
a SAS data set that is created by the SQL procedure. A PROC SQL view contains no
data. Instead, it stores information that enables it to read data values from other files,
which can include SAS data files, SAS/ACCESS views, DATA step views, or other
PROC SQL views. The output of a PROC SQL view can be either a subset or a
superset of one or more files.

query
a set of instructions that requests particular information from one or more data
sources.

query expression
in PROC SQL, a SELECT statement that references at least one table and, when
executed, creates a temporary table that exists only during the execution of the
statement. You can combine the results of multiple table expressions with set
operators to create a query expression.

SAS data file
a type of SAS data set that contains data values as well as descriptor information that
is associated with the data. The descriptor information includes information such as
the data types and lengths of the variables, as well as the name of the engine that was
used to create the data.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types
of SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS data
views contain only the descriptor information plus other information that is required
for retrieving data values from other SAS data sets or from files whose contents are
in other software vendors' file formats.

SAS data view
a type of SAS data set that retrieves data values from other files. A SAS data view
contains only descriptor information such as the data types and lengths of the
variables (columns) plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors' file
formats. Short form: data view.

SAS format
a type of SAS language element that applies a pattern to or executes instructions for
a data value to be displayed or written as output. Types of formats correspond to the
data's type: numeric, character, date, time, or timestamp. The ability to create user-
defined formats is also supported. Examples of SAS formats are BINARY and
DATE. Short form: format.

simple index
an index that uses the values of only one variable to locate observations.

SQL
See Structured Query Language.

Glossary 395

SQL pass-through facility
the technology that enables SQL query code to be passed to a particular DBMS for
processing. Short form: pass-through facility.

Structured Query Language
a standardized, high-level query language that is used in relational database
management systems to create and manipulate objects in a database management
system. SAS implements SQL through the SQL procedure. Short form: SQL.

union join
a type of join that returns all rows with their respective values from each input table.
Columns that do not exist in one table will have null (missing) values for those rows
in the result table.

view
a definition of a virtual data set that is named and stored for later use. A view
contains no data; it merely describes or defines data that is stored elsewhere.

WHERE clause
the keyword WHERE followed by one or more WHERE expressions.

WHERE expression
defines the criteria for selecting observations.

396 Glossary

Index

A
abbreviating column names 76
aggregate functions 56

creating macro variables from result of
153

HAVING clause with 70
table of 56
using 56
with unique values 61

alias
assigning a column alias 30
referring to calculated columns by 31
table aliases 76

ALL keyword 334
set operators and 141

ALTER TABLE statement 224
ANSI standard

SQL procedure and 373
arithmetic operators 374
asterisk (*) notation 292
automatic macro variables 152, 157
averages, weighted 172

B
BETWEEN condition 306
BETWEEN-AND operators

retrieving rows 51
Boolean operators

retrieving rows 47
BTRIM function 306
BUFFERSIZE= option 216

C
calculated columns 29

assigning column alias to 30
referring to by alias 31
sorting by 40
SQL 308

Cartesian product 75, 318, 319

cross joins 87
CASE expression

assigning values conditionally 32
case-control studies 285
CASE-OPERAND form

assigning values conditionally 34
character strings

converting to lowercase 332
converting to uppercase 358
trimming 306

COALESCE function 309
in joins 90
replacing missing values 35

collating sequence
alternate 374

column alias 30
ANSI standard exceptions 376
assigning to calculated columns 30
referring to calculated columns 31
specifying 293

column attributes 227, 311
list of 27
specifying 36

column definitions
creating tables from 110

column headers
suppressing 28

column modifiers 374
column names

abbreviating 76
qualifying 76

column-modifier component 311
column-name component 313
columns 4

adding 121
aliases 293
altering 121, 224
assigning values conditionally 32
calculated 307, 308
calculating values 29
changing formats 123

397

changing informats 123
changing labels 123
changing width 123
combinations of values 279
creating 27
deleting 124
DICTIONARY.COLUMNS 149
grouping by multiple columns 65
grouping by one column 64
indexes on 227, 228, 242
inserting values 242
length of 311
list of, with attributes 27
locating specific columns 149
modifiers 374
modifying 123
multicolumn joins 81
renaming 123, 227, 243
replacing missing values 35
returning values 309
selecting 22, 243, 313
selecting all 22
selecting specific 23
sorting, with missing values 43
sorting by 38
sorting by column position 41
sorting by multiple columns 38
sorting by unselected columns 42
SQL procedure 210
storing values of 293
summarizing data in multiple columns

186
unique values 25
updating values 243

COMMIT statement 375
comparison operators

inner joins with 78
retrieving rows with 45
truncated string 53

composite indexes 125, 229
concatenating

query results 106
values in macro variables 155

conditional operators
retrieving rows with 49

CONNECT statement 227
CONNECTION TO component 314
CONSTDATETIME option 217
CONTAINS condition 314, 374
correlated subqueries 97, 346
CORRESPONDING keyword 334
COUNT(*) function 350
counting

all rows 62
duplicate rows 181
nonmissing values 62

unique values 61
CREATE INDEX statement 125, 228
CREATE TABLE statement 230
CREATE VIEW statement 234
cross joins 87, 323

D
data files

See tables
data set options

creating tables with 113
SQL procedure with 151

DATA step
compared with SQL procedure 5
match-merges 91

DATA step views
SQL procedure 211

data summaries 350
DATE function

replacing references to 144
DATETIME function

replacing references to 144
DBMS

accessing with SAS/ACCESS 162
connecting with LIBNAME statement

163
connecting with Pass-Through Facility

166
deploying PUT function and SAS

formats 143
DBMS connections

ending 238
sending DBMS statements to 240
SQL procedure 227
storing in views 235

DBMS queries 314
DBMS tables 4

PROC SQL views of 165
querying 164

debugging queries 136
DELETE statement 236
DESCRIBE statement 237
DESCRIBE VIEW statement 147
DICTIONARY tables 144

performance and 150
reporting from 257
retrieving information about 146
using 148
views and 144

DICTIONARY.COLUMNS 149
DICTIONARY.TABLES 148
DISCONNECT statement 238
DOUBLE option 217
DQUOTE= option 217
DROP statement 239

398 Index

E
embedded LIBNAME statements 235
embedded SQL 376
equijoins 318
errors

caused by missing values 63
grouping errors caused by missing

values 67
update errors 120

ERRORSTOP option 217
example tables 7
EXCEPT operator 338

combining queries 102, 104
EXEC option 218
EXECUTE statement 240
execution time 138
existence of a group of values 98
EXISTS condition 98, 314
EXITCODE option 218
expanded SELECT * statement 138

F
FEEDBACK option 218

expanding SELECT * statement with
138

fields
See columns

files
See tables

filtering grouped data 69
HAVING clause versus WHERE clause

70
using a simple HAVING clause 69
using HAVING clause with aggregate

functions 70
FLOW option 218
foreign key 126
formats

changing column format 123
deploying inside a DBMS 143
for columns 311

FROM clause 20, 299
full outer joins 86
functions

FCMP procedure 375
SQL procedure and 375
sql-expression and 341

G
general integrity constraints 126
GROUP BY clause 21, 301
grouping data 64

by multiple columns 65
by one column 64

filtering grouped data 69
finding errors caused by missing values

67
grouping and sorting 66
with missing values 67
without summarizing 64

H
HAVING clause 21, 302

aggregate functions with 70
filtering grouped data 69
filtering grouped data, versus WHERE

clause 70
hierarchical data

expanding in tables 183
host-variable references 152

I
IN condition 315
IN operator

multiple-value subqueries and 96
retrieving rows 50

in-database procedures
generating SQL for 362

in-line views 132, 300, 374
querying 272
temporary tables versus 141

indexes 124
composite 125
composite indexes 229
creating 124
creating with CREATE INDEX

statement 125
deleting 125, 239
managing 229
on altered columns 227
on columns 228, 242
query performance and 140
simple indexes 229
SQL procedure 229
tips for creating 125
UNIQUE keyword 229
unique values 125

informats
changing column informat 123
for columns 311

INNER JOIN keywords 78
inner joins 75, 318

comparison operators for 78
creating with INNER JOIN keywords

78
data from multiple tables 82
multicolumn joins 81
null values and 79

Index 399

order of output 77
reflexive joins 83
self-joins 83
showing relationships within a table 83
table aliases 76

INOBS= option 218
restricting row processing 136

INSERT statement 241
inserting rows 114

with queries 116
with SET clause 114
with VALUES clause 115

integrity constraints 126
PROC SQL tables 227, 234
referential 126

INTERSECT operator 340
combining queries 102, 105

INTO clause 293
IPASSTHRU option 218
IS condition 316
IS MISSING operator

retrieving rows 50
IS NOT MISSING operator

inner joins 80
iterations

limiting 137

J
joined-table component 317
joins 74, 317

Cartesian product 75
COALESCE function in 90
combining with subqueries 100
comparing match-merges with 91
comparing with subqueries 141
cross joins 87, 323
equijoins 318
inner joins 75, 318
joining a table with itself 318
joining more than two tables 327
joining three tables 268
joining two tables 251
natural joins 89, 325
outer joins 84, 259, 321, 374
reducing size of results 141
reflexive joins 318
rows to be returned 318
specialty joins 87
subqueries compared with 330
table limit 318
types of 317
union joins 89, 324
when to use 101
WHERE expressions with 141

L
labels

changing column labels 123
for columns 311

left outer joins 85
libname engines

querying DBMS tables 164
LIBNAME statement

connecting to a DBMS 163
embedding in views 235

libnames
embedding in views 131

librefs
stored views and 235

LIKE condition 330
patterns for searching 331
searching for literals 331
searching for mixed-case strings 332

LIKE operator
retrieving rows 52

log
displaying SQL definitions 237

logical operators
retrieving rows 47

LOOPS= option 219
limiting iterations 137

LOWER function 332

M
macro facility

SQL procedure with 152
macro variables 152

concatenating values in 155
creating and using 199
creating from aggregate function results

153
creating from query results 153
creating in SQL procedure 152
creating multiple 154
set by SQL procedure 157
SYS_SQLSETLIMIT 372

macros
counting missing values 288
defining to create tables 156

match-merges 91
comparing with joins 91
when all values match 91
when position of values is important 94
when some values match 93

matching patterns 285, 330
MEAN function

summarizing data 57
WHERE clause with 57

merging
disabling remerge 144

400 Index

remerging summary statistics 59
merging data

SQL procedure 352
missing values 5

counting with a macro 288
finding errors caused by 63
finding grouping errors caused by 67
grouping data with 67
overlaying 176
replacing in columns 35
retrieving rows and 50
sorting columns with 43
SQL procedure 288, 316
summarizing data with 62
WHERE clause with 54

multicolumn joins 81
multiple-value subqueries 96

N
natural joins 89, 325
nested subqueries 99
NOEXEC option

syntax checking with 137
NOT IN operator

multiple-value subqueries and 96
null values 5

inner joins and 79
NUMBER option 220

O
observations

See also rows
SQL procedure 210

ODS (Output Delivery System)
SQL procedure with 169

ODS destinations 169
operands

values from 340
operators

arithmetic 374
order of evaluation 341
set operators 333, 375
truncated string comparison operators

343
values from 340

ORDER BY clause 21, 303, 374
omitting 141
query performance and 141

orthogonal expressions 374
outer joins 84, 259, 321, 374

full outer joins 86
including nonmatching rows 85
left outer joins 85
right outer joins 85

OUTER UNION operator
combining queries 102
concatenating query results 106

OUTER UNION set operator 334
OUTOBS= option 220

restricting row processing 136
output

adding text to 27
formatting with REPORT procedure

160
output objects 169
overlaying missing values 176

P
pattern matching 285, 330
percentages

computing within subtotals 179
performance

queries 140
primary key 126
PRINT option 220
PROC SQL statement 215
PROC SQL tables 210

adding rows 241
aliases 299, 318
altering columns 224
altering integrity constraints 224
changing column attributes 227
combining 254
counting rows 350
creating 230, 245
creating, from query expressions 233
creating, from query results 247
deleting 239
deleting rows 236, 237
indexes on columns 227
initial values of columns 227
inserting data 245
inserting values 242
integrity constraints 227, 234
joining 251, 276, 317
joining a table with itself 317, 318
joining more than two tables 327
joining three tables 268
ordering rows 303
recursive table references 233
renaming columns 227
retrieving data from 332
selecting columns 243
selecting rows 243
source tables 299
table definitions 237
table expressions 333
updating 243, 244, 249
without rows 233

Index 401

PROC SQL views
See also views
adding rows 241
creating, from query expressions 233
creating, from query results 265
deleting 239
deleting rows 236, 237
embedding LIBNAME statements in

235
inserting rows 242
librefs and stored views 235
selecting columns 234, 243
selecting rows 243
sorting data retrieved by 235
source views 299
SQL procedure 211
storing DBMS connection information

235
updating 168, 235
updating column values 243
updating tables through 244
view definitions 237, 374

PROMPT option 220
PUT function

deploying inside a DBMS 143
mapping to SAS_PUT function 365
optimizing 142
reducing 142
reducing, based number of format

values 368
reducing, based on engine type 366
reducing, based on number of

observations in table 367

Q
qualifying column names 76
queries 4

adding text to output 27
ALL keyword in set operations 141
breaking into steps 141
combining with set operators 102
comparing execution time of two

queries 138
creating 136
creating tables from results 247
creating views from results 265
DBMS queries 314
DBMS tables 164
debugging 136
duplicate rows and performance 141
in-line view queries 272
in-line views 132
in-line views versus temporary tables

141
indexes and 140

inserting rows with 116
limiting iterations 137
performance improvement 140
remerged data and 370
restricting row processing 136
subqueries 95
validating 71

query expressions 333
ALL keyword and 334
CORRESPONDING keyword and 334
creating PROC SQL tables from 233
creating PROC SQL views from 235
EXCEPT and 338
INTERSECT and 340
OUTER UNION and 334
set operators and 333
subqueries 343
UNION and 337
validating syntax 244

query results 4
concatenating 106
creating macro variables from 153
creating tables from 111
deleting duplicate rows 25

query-expression component 332

R
records

See rows
REDUCEPUT option 142, 220
REDUCEPUTOBS option 142, 221
REDUCEPUTVALUES option 143, 221
referential integrity constraints 126
reflexive joins 83, 318
relational theory 3
relations 3
REMERGE option 222
remerging data 370

SQL procedure 352
remerging summary statistics 59

disabling remerge 144
renaming columns 123
REPORT procedure

formatting SQL output 160
reports

creating summary reports 188
from DICTONARY tables 257

RESET statement 242
resetting SQL procedure options 139

resetting options 139
retrieving rows 44

based on comparison 45
identifying columns with missing values

50
rows that satisfy a condition 44

402 Index

satisfying multiple conditions 47
with a WHERE clause with missing

values 54
with BETWEEN-AND operators 51
with IN operator 50
with IS MISSING operator 50
with LIKE operator 52
with other conditional operators 49
with simple WHERE clause 44
with truncated string comparison

operators 53
return codes

Pass-Through Facility 167
returning a SUBSTRING 348
right outer joins 85
ROLLBACK statement 375
rows 4

See also retrieving rows
adding to tables or views 241
combining data from multiple rows into

single row 59
counting 62, 350
counting duplicates 181
deleting 120, 236, 237
deleting duplicates 25
duplicates 141
including all 89
including all combinations of 87
inserting 114, 242
inserting with queries 116
inserting with SET clause 114
inserting with VALUES clause 115
joins and 318
matching 89
nonmatching 85
ordering 303
producing from first or second query

107
restricting row processing 136
returned by subqueries 314
selecting 243, 306
selecting all 86
SQL procedure 210
updating all rows with same expression

118
updating rows with different

expressions 119

S
SAS_PUT() function

mapping PUT function to 365
SAS data files

See tables
SAS data views

DICTIONARY tables 144

SQL procedure 211
SAS System information 144
SAS/ACCESS

accessing a DBMS 162
LIBNAME statement 163

SAS/ACCESS views
SQL procedure 211
updating 168

SASHELP views 144
retrieving information about 146

searching for patterns 285, 330, 331
SELECT * statement

expanding with FEEDBACK option
138

SELECT clause 20, 291
SELECT statement 20, 243

See also WHERE clause
FROM clause 20
GROUP BY clause 21
HAVING clause 21
ORDER BY clause 21
ordering clauses 22
SELECT clause 20

self-joins 83
SET clause

inserting rows with 114
set membership 315
set operators 333, 375

ALL keyword 141
combining queries with 102

simple indexes 229
single-value subqueries 95
sort order 37, 39

customized 191
sorting data 37

by calculated column 40
by column 38
by column position 41
by multiple columns 38
by unselected columns 42
columns with missing values 43
grouping and sorting 66

sorting data retrieved by views 235
sorting sequence 43
SORTMSG option 222
SORTSEQ= option 222
SOUNDS-LIKE operator 274
source data

generating SQL for in-database
processing of 362

SQL 3
generating for in-database processing of

source data 362
SQL, embedded 376
SQL component

table-expression 357

Index 403

SQL components 305
BETWEEN condition 306
BTRIM function 306
CALCULATED 307
CASE expression 308
COALESCE function 309
column-definition 310
column-modifier 311
column-name 313
CONNECTION TO 314
CONTAINS condition 314
EXISTS condition 314
IN condition 315
IS condition 316
joined-table 317
LIKE condition 330
LOWER function 332
query-expression 332
sql-expression 340
SUBSTRING function 348
summary-function 349
UPPER function 358

SQL procedure 3, 210
See also SQL components
ANSI standard and 373
coding conventions 211
collating sequence 374
column modifiers 374
combinations of column values 279
combining two tables 254
compared with DATA step 5
counting missing values with a macro

288
creating macro variables 152
creating queries 136
creating tables and inserting data 245
creating tables from query results 247
creating views from query results 265
cumulative time for 138
data set options with 151
data types and dates 310
debugging queries 136
DICTIONARY tables 144
example tables 7
formatting output 160
functions supported by 375
identifiers and naming conventions 375
indexes 229
joining three tables 268
joining two tables 251, 276
macro facility with 152
macro variables set by 157
matching case rows and control rows

285
missing values 288, 316
ODS with 169

orthogonal expressions 374
outer joins 259
PROC SQL tables 210
querying in-line views 272
reporting from DICTIONARY tables

257
reserved words 373
resetting options 139, 242
retrieving values 274
statistical functions 375
syntax 212
syntax checking 137
task tables 214, 215
terminology 4, 210
three-valued logic 376
timing individual statements 138
undo policy 370
updating PROC SQL tables 249
user privileges 376
using tables in other procedures 203
views 211

SQL Procedure Pass-Through Facility 166
connecting to a DBMS 166
example 167
return codes 167

sql-expression component 340
correlated subqueries and 346
functions and 341
operators and order of evaluation 341
query expressions and 343
subqueries and efficiency 347
truncated string comparison operators

and 343
USER and 341

SQLCONSTDATETIME system option
361

SQLEXITCODE macro variable 158
SQLGENERATION= system option 362
SQLMAPPUTTO= system option 365
SQLOBS macro variable 158
SQLOOPS macro variable 137, 158
SQLRC macro variable 158
SQLREDUCEPUT= system option 142,

366
SQLREDUCEPUTOBS= system option

142, 367
SQLREDUCEPUTVALUES= system

option 143, 368
SQLREMERGE system option 370
SQLUNDOPOLICY 370
SQLUNDOPOLICY= system option 159,

370
SQLXMSG macro variable 159
SQLXRC macro variable 159
statistical functions 375
statistical summaries 56, 349

404 Index

statistics
based on number of arguments 351

STIMER option 222
timing SQL procedure 138

string comparison operators
truncated 343

Structured Query Language
See SQL

subqueries 95, 343
combining with joins 100
compared with joins 330
comparing with joins 141
correlated 346
correlated subqueries 97
efficiency and 347
multiple nesting levels 99
multiple-value 96
returning rows 314
single-value 95
testing for existence of a group of

values 98
when to use 101

subsetting data 300, 302
SUBSTRING function 348
subtotals

computing percentages within 179
SUM function

summarizing data 58
summarizing data 56

aggregate functions 56
aggregate functions, using 56
aggregate functions with unique values

61
combining data from multiple rows into

single row 59
displaying sums 58
in multiple columns 186
remerging summary statistics 59
SQL procedure 350
with missing values 62
with WHERE clause 57

summary functions
See also aggregate functions
disabling remerging of data 144

summary reports
creating 188

summary statistics
remerging 59

summary-function component 349
counting rows 350
remerging data 352
statistics based on number of arguments

351
summarizing data 350

sums
displaying 58

syntax checking 137
SYS_SQLSETLIMIT macro variable 372

T
table aliases 299, 318

abbreviating column names 76
inner joins 76

table definitions 237
table expressions 333
table-expression component 357
tables 4

See also PROC SQL tables
Cartesian product 75
comparing 174
copying 113
counting duplicate rows 181
creating 110
creating, like an existing table 113
creating from column definitions 110
creating from query results 111
creating with data set options 113
creating with macros 156
creating without rows 110
DBMS tables 4
deleting 126
example tables 7
expanding hierarchical data 183
inserting rows 114
integrity constraints 126
joining a table to itself 83
omitting ORDER BY clause when

creating 141
selecting all columns 22
selecting columns 22
selecting specific columns 23
SQL tables in other procedures 203
SQL tables in SAS 126
structure of 27
temporary tables versus in-line views

141
update errors 120
updating all rows with same expression

118
updating conditionally 194
updating rows with different

expressions 119
updating values 118
updating with values from another table

197
temporary tables

in-line views versus 141
terminology 4
text

adding to output 27
THREADS option 222

Index 405

three-valued logic 376
TIME function

replacing references to 144
timing procedure statements 138
TODAY function

replacing references to 144
truncated string comparison operators 53,

343

U
UNDO_POLICY= option 159, 223
undo policy

SQL procedure 370
union joins 89, 324
UNION operator 337

combining queries 102, 103
UNIQUE keyword 125, 229
unique values

aggregate functions with 61
counting 61
counting all rows 62
counting nonmissing values 62
in columns 25

UPDATE statement 243
updating tables

conditionally 194
errors 120
updating values 118
with values from another table 197

updating views 130, 168
UPPER function 358
USER literal 341
user-defined macro variables 152

V
VALIDATE statement 244

syntax checking with 137
validating queries 71
VALUES clause

inserting rows with 115
variables

See also columns
SQL procedure 210

view definitions 237
ORDER BY clause in 374

views 5, 129
creating 129
deleting 132
describing 130
DICTIONARY tables and 144
embedding libnames in 131
in-line 132, 272, 300, 374
of DBMS tables 165
omitting ORDER BY clause when

creating 141
PROC SQL views in SAS 134
SAS data views 144
SASHELP views 144, 146
SQL procedure 211
tips for using 133
updating 130
updating PROC SQL and SAS/

ACCESS views 168

W
WARNRECURS option 223
weighted averages 172
WHERE clause 21, 300

filtering grouped data, versus HAVING
clause 70

MEAN function with 57
missing values with 54
retrieving rows conditionally 44
summarizing data 57

WHERE expressions
joins with 141

width
changing column width 123

406 Index

	Contents
	About This Book
	Syntax Conventions for the SAS Language
	Overview of Syntax Conventions for the SAS Language
	Syntax Components
	Style Conventions
	Special Characters
	References to SAS Libraries and External Files

	What’s New in the SAS 9.3 SQL Procedure
	Overview
	Ability to Optimize the PUT Function
	Ability to Reuse the LIBNAME Statement Database Connection
	Additional PROC SQL Statement Options
	Additional Macro Variable Specifications for the INTO Clause
	Additional Dictionary Table
	Additional System Macro Variable
	Updated Output Examples
	Modified the Default Value for the SQLGENERATION= Option
	Added Security for Password-Protected SAS Views

	Recommended Reading
	Using the SQL Procedure
	Introduction to the SQL Procedure
	What Is SQL?
	What Is the SQL Procedure?
	Terminology
	Tables
	Queries
	Views
	Null Values

	Comparing PROC SQL with the SAS DATA Step
	Notes about the Example Tables

	Retrieving Data from a Single Table
	Overview of the SELECT Statement
	How to Use the SELECT Statement
	SELECT and FROM Clauses
	WHERE Clause
	ORDER BY Clause
	GROUP BY Clause
	HAVING Clause
	Ordering the SELECT Statement

	Selecting Columns in a Table
	Selecting All Columns in a Table
	Selecting Specific Columns in a Table
	Eliminating Duplicate Rows from the Query Results
	Determining the Structure of a Table

	Creating New Columns
	Adding Text to Output
	Calculating Values
	Assigning a Column Alias
	Referring to a Calculated Column by Alias
	Assigning Values Conditionally
	Replacing Missing Values
	Specifying Column Attributes

	Sorting Data
	Overview of Sorting Data
	Sorting by Column
	Sorting by Multiple Columns
	Specifying a Sort Order
	Sorting by Calculated Column
	Sorting by Column Position
	Sorting by Columns That Are Not Selected
	Specifying a Different Sorting Sequence
	Sorting Columns That Contain Missing Values

	Retrieving Rows That Satisfy a Condition
	Using a Simple WHERE Clause
	Retrieving Rows Based on a Comparison
	Retrieving Rows That Satisfy Multiple Conditions
	Using Other Conditional Operators
	Using Truncated String Comparison Operators
	Using a WHERE Clause with Missing Values

	Summarizing Data
	Overview of Summarizing Data
	Using Aggregate Functions
	Summarizing Data with a WHERE Clause
	Displaying Sums
	Combining Data from Multiple Rows into a Single Row
	Remerging Summary Statistics
	Using Aggregate Functions with Unique Values
	Summarizing Data with Missing Values

	Grouping Data
	Grouping by One Column
	Grouping without Summarizing
	Grouping by Multiple Columns
	Grouping and Sorting Data
	Grouping with Missing Values

	Filtering Grouped Data
	Overview of Filtering Grouped Data
	Using a Simple HAVING Clause
	Choosing between HAVING and WHERE
	Using HAVING with Aggregate Functions

	Validating a Query

	Retrieving Data from Multiple Tables
	Introduction
	Selecting Data from More than One Table by Using Joins
	Overview of Selecting Data from More than One Table by Using
Joins
	Inner Joins
	Outer Joins
	Specialty Joins
	Using the Coalesce Function in Joins
	Comparing DATA Step Match-Merges with PROC SQL Joins

	Using Subqueries to Select Data
	Single-Value Subqueries
	Multiple-Value Subqueries
	Correlated Subqueries
	Testing for the Existence of a Group of Values
	Multiple Levels of Subquery Nesting
	Combining a Join with a Subquery

	When to Use Joins and Subqueries
	Combining Queries with Set Operators
	Working with Two or More Query Results
	Producing Unique Rows from Both Queries (UNION)
	Producing Rows That Are in Only the First Query Result (EXCEPT)
	Producing Rows That Belong to Both Query Results (INTERSECT)
	Concatenating Query Results (OUTER UNION)
	Producing Rows from the First Query or the Second Query

	Creating and Updating Tables and Views
	Introduction
	Creating Tables
	Creating Tables from Column Definitions
	Creating Tables from a Query Result
	Creating Tables like an Existing Table
	Copying an Existing Table
	Using Data Set Options

	Inserting Rows into Tables
	Inserting Rows with the SET Clause
	Inserting Rows with the VALUES Clause
	Inserting Rows with a Query

	Updating Data Values in a Table
	Updating All Rows in a Column with the Same Expression
	Updating Rows in a Column with Different Expressions
	Handling Update Errors

	Deleting Rows
	Altering Columns
	Adding a Column
	Modifying a Column
	Deleting a Column

	Creating an Index
	Using PROC SQL to Create Indexes
	Tips for Creating Indexes
	Deleting Indexes

	Deleting a Table
	Using SQL Procedure Tables in SAS Software
	Creating and Using Integrity Constraints in a Table
	Creating and Using PROC SQL Views
	Overview of Creating and Using PROC SQL Views
	Creating Views
	Describing a View
	Updating a View
	Embedding a LIBNAME in a View
	Deleting a View
	Specifying In-Line Views
	Tips for Using SQL Procedure Views
	Using SQL Procedure Views in SAS Software

	Programming with the SQL Procedure
	Introduction
	Using PROC SQL Options to Create and Debug Queries
	Overview of Using PROC SQL Options to Create and Debug Queries
	Restricting Row Processing with the INOBS= and OUTOBS= Options
	Limiting Iterations with the LOOPS= Option
	Checking Syntax with the NOEXEC Option and the VALIDATE Statement
	Expanding SELECT * with the FEEDBACK Option
	Timing PROC SQL with the STIMER Option
	Resetting PROC SQL Options with the RESET Statement

	Improving Query Performance
	Overview of Improving Query Performance
	Using Indexes to Improve Performance
	Using the Keyword ALL in Set Operations
	Omitting the ORDER BY Clause When Creating Tables and Views
	Using In-Line Views versus Temporary Tables
	Comparing Subqueries with Joins
	Using WHERE Expressions with Joins
	Optimizing the PUT Function
	Replacing References to the DATE, TIME, DATETIME, and TODAY
Functions
	Disabling the Remerging of Data When Using Summary Functions

	Accessing SAS System Information by Using DICTIONARY Tables
	What Are Dictionary Tables?
	Retrieving Information about DICTIONARY Tables and SASHELP
Views
	Using DICTIONARY.TABLES
	Using DICTIONARY.COLUMNS
	DICTIONARY Tables and Performance

	Using SAS Data Set Options with PROC SQL
	Using PROC SQL with the SAS Macro Facility
	Overview of Using PROC SQL with the SAS Macro Facility
	Creating Macro Variables in PROC SQL
	Concatenating Values in Macro Variables
	Defining Macros to Create Tables
	Using the PROC SQL Automatic Macro Variables

	Formatting PROC SQL Output by Using the REPORT Procedure
	Accessing a DBMS with SAS/ACCESS Software
	Overview of Accessing a DBMS with SAS/ACCESS Software
	Connecting to a DBMS by Using the LIBNAME Statement
	Connecting to a DBMS by Using the SQL Procedure Pass-Through
Facility
	Updating PROC SQL and SAS/ACCESS Views

	Using the Output Delivery System with PROC SQL

	Practical Problem-Solving with PROC SQL
	Overview
	Computing a Weighted Average
	Problem
	Background Information
	Solution
	How It Works

	Comparing Tables
	Problem
	Background Information
	Solution
	How It Works

	Overlaying Missing Data Values
	Problem
	Background Information
	Solution
	How It Works

	Computing Percentages within Subtotals
	Problem
	Background Information
	Solution
	How It Works

	Counting Duplicate Rows in a Table
	Problem
	Background Information
	Solution
	How It Works

	Expanding Hierarchical Data in a Table
	Problem
	Background Information
	Solution
	How It Works

	Summarizing Data in Multiple Columns
	Problem
	Background Information
	Solution
	How It Works

	Creating a Summary Report
	Problem
	Background Information
	Solution
	How It Works

	Creating a Customized Sort Order
	Problem
	Background Information
	Solution
	How It Works

	Conditionally Updating a Table
	Problem
	Background Information
	Solution
	How It Works

	Updating a Table with Values from Another Table
	Problem
	Background Information
	Solution
	How It Works

	Creating and Using Macro Variables
	Problem
	Background Information
	Solution
	How It Works

	Using PROC SQL Tables in Other SAS Procedures
	Problem
	Background Information
	Solution
	How It Works

	SQL Procedure Reference
	SQL Procedure
	Overview
	What Is the SQL Procedure?
	What Are PROC SQL Tables?
	What Are Views?
	SQL Procedure Coding Conventions

	Syntax: SQL Procedure
	PROC SQL Statement
	ALTER TABLE Statement
	CONNECT Statement
	CREATE INDEX Statement
	CREATE TABLE Statement
	CREATE VIEW Statement
	DELETE Statement
	DESCRIBE Statement
	DISCONNECT Statement
	DROP Statement
	EXECUTE Statement
	INSERT Statement
	RESET Statement
	SELECT Statement
	UPDATE Statement
	VALIDATE Statement

	Examples: SQL Procedure
	 Creating a Table and Inserting Data into It
	Creating a Table from a Query's Result
	Updating Data in a PROC SQL Table
	Joining Two Tables
	Combining Two Tables
	Reporting from DICTIONARY Tables
	Performing an Outer Join
	Creating a View from a Query's Result
	 Joining Three Tables
	Querying an In-Line View
	 Retrieving Values with the SOUNDS-LIKE Operator
	 Joining Two Tables and Calculating a New Value
	Producing All the Possible Combinations of the Values in a
Column
	Matching Case Rows and Control Rows
	Counting Missing Values with a SAS Macro

	SQL SELECT Statement Clauses
	Dictionary
	SELECT Clause
	INTO Clause
	FROM Clause
	WHERE Clause
	GROUP BY Clause
	HAVING Clause
	ORDER BY Clause

	SQL Procedure Components
	Overview
	Dictionary
	BETWEEN Condition
	BTRIM Function
	CALCULATED
	CASE Expression
	COALESCE Function
	column-definition
	column-modifier
	column-name
	CONNECTION TO
	CONTAINS Condition
	EXISTS Condition
	IN Condition
	IS Condition
	joined-table
	LIKE Condition
	LOWER Function
	query-expression
	sql-expression
	SUBSTRING Function
	summary-function
	table-expression
	UPPER Function

	Appendixes
	SQL Macro Variables and System Options
	Dictionary
	SQLCONSTDATETIME System Option
	SQLGENERATION= System Option
	SQLMAPPUTTO= System Option
	SQLREDUCEPUT= System Option
	SQLREDUCEPUTOBS= System Option
	SQLREDUCEPUTVALUES= System Option
	SQLREMERGE System Option
	SQLUNDOPOLICY= System Option
	SYS_SQLSETLIMIT Macro Variable

	PROC SQL and the ANSI Standard
	Source for SQL Examples
	Overview
	EMPLOYEES
	HOUSES
	MATCH_11
	PROCLIB.DELAY
	PROCLIB.HOUSES
	PROCLIB.MARCH
	PROCLIB.PAYLIST2
	PROCLIB.PAYROLL
	PROCLIB.PAYROLL2
	PROCLIB.SCHEDULE2
	PROCLIB.STAFF
	PROCLIB.STAFF2
	PROCLIB.SUPERV2
	STORES
	SURVEY

	Glossary
	Index

